Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T14:07:57.493Z Has data issue: false hasContentIssue false

Advanced human in vitro models to assess metal oxide nanoparticle-cell interactions

Published online by Cambridge University Press:  13 November 2014

Peter Wick
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland; peter.wick@empa.ch
Stefanie Grafmueller
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland; stefanie.grafmueller@empa.ch
Alke Petri-Fink
Affiliation:
Adolphe Merkle Institute, University of Fribourg, Switzerland; alke.fink@unifr.ch
Barbara Rothen-Rutishauser
Affiliation:
Adolphe Merkle Institute, University of Fribourg, Switzerland; barbara.rothen@unifr.ch
Get access

Abstract

Engineered nanoparticles, in particular metal oxide nanoparticles, with their unique and novel properties, enable a plethora of new applications in various fields of research. These new properties have raised concerns about potential adverse effects for the environment and human health and are nowadays very controversial. A reliable, cost- and time-effective, rapid and mechanistic-based testing strategy is needed to replace current conventional phenomenological assessments. Today’s in vitro technology, providing human-based advanced cellular models representing different organ barriers such as skin, lung, placenta, or liver, may cover this need. The aim of this article is to present the current changes in (nano) toxicology strategies, the extent to which in vitro models have achieved general acceptance, and how the relevance of these models can further be improved using examples of selected metal oxide nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rasmussen, J.W., Martinez, E., Louka, P., Wingett, D.G., Expert Opin. Drug Deliv. 7, 1063 (2010).Google Scholar
Gupta, A.K., Gupta, M., Biomaterials 26, 3995 (2005).Google Scholar
Hartung, T., Rovida, C., Nature 460, 1080 (2009).Google Scholar
Rossini, G.P., Hartung, T., ALTEX 29, 359 (2012).Google Scholar
Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council, Toxicity Testing for the 21st Century: A Vision and a Strategy (The National Academies Press, Washington, DC, 2007).Google Scholar
Astashkina, A., Grainger, D.W., Adv. Drug Deliv. Rev. 6970, 1 (2014).Google Scholar
Hartung, T., Nature 460, 208 (2009).Google Scholar
Mody, V.V., Siwale, R., Singh, A., Mody, H.R., J. Pharm. Bioallied Sci. 2, 282 (2010).CrossRefGoogle Scholar
Future Markets Inc., The Global Market for Metal Oxide Nanoparticles to 2020 (Research and Markets, Dublin, 2013).Google Scholar
Rodriguez, J.A., Fernandez-Garcia, M., Synthesis, Properties, and Applications of Oxide Nanomaterials (Wiley, Hoboken 2007), p. 718.Google Scholar
Niederberger, M., Garnweitner, G., Buha, J., Polleux, J., Ba, J., Pinna, N., J. Sol-Gel Sci. Technol. 40, 259 (2006).Google Scholar
Niederberger, M., Acc. Chem. Res. 40, 793 (2007).CrossRefGoogle Scholar
Lu, A.H., Salabas, E.L., Schuth, F., Angew. Chem. Int. Ed. Engl. 46, 1222 (2007).Google Scholar
Sun, S., Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002).Google Scholar
LaMer, V.K., Dinegar, R.H., J. Am. Chem. Soc. 72, 4847 (1950).Google Scholar
Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B., Petri-Fink, A., Chem. Rev. 112, 2323 (2012).Google Scholar
Carterson, A.J., Höner zu Bentrup, K., Ott, C.M., Clarke, M.S., Pierson, D.L., Vanderburg, C.R., Buchanan, K.L., Nickerson, C.A., Schurr, M.J., Infect. Immun. 73, 1129 (2005).Google Scholar
Roggen, E.L., Soni, N.K., Verheyen, G.R., Toxicol. In Vitro 20, 1249 (2006).CrossRefGoogle Scholar
Gstraunthaler, G., Hartung, T., in Cell Culture Models of Biological Barriers: In-Vitro Test Systems for Drug Absorption and Delivery, Lehr, C.M., Ed. (Taylor and Francis, New York, 2002), vol. 7, pp. 112120.Google Scholar
Gruber, F.P., Hartung, T., ALTEX 21 (Suppl. 1), 3 (2004).Google Scholar
Wheather, P.R., Burkitt, H.G., Daniels, V.G., Functional Histology (Churchill Livingstone, Edinburgh, 1979), p. 348.Google Scholar
Barry, B.W., Eur. J. Pharm. Sci. 14, 101 (2001).CrossRefGoogle Scholar
Loden, M., Breitner, H., Gonzalez, H., Edstrom, D.W., Akerstrom, U., Austad, J., Buraczewska-Norin, I., Matsson, M., Wulf, H.C., Br. J. Dermatol. 165, 255 (2011).CrossRefGoogle Scholar
Sharma, V., Shukla, R.K., Saxena, N., Parmar, D., Das, M., Dhawan, A., Toxicol. Lett. 185, 211 (2009).Google Scholar
Boukamp, P., Petrussevska, R.T., Breitkreutz, D., Hornung, J., Markham, A., Fusenig, N.E., J. Cell Biol. 106, 761 (1988).Google Scholar
Zanette, C., Pelin, M., Crosera, M., Adami, G., Bovenzi, M., Larese, F.F., Florio, C., Toxicol. In Vitro 25, 1053 (2011).Google Scholar
Xue, C., Wu, J., Lan, F., Liu, W., Yang, X., Zeng, F., Xu, H., J. Nanosci. Nanotechnol. 10, 8500 (2010).Google Scholar
Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B., Zhuang, Z., Part. Fibre Toxicol. 7, 1 (2010).Google Scholar
Osborne, R., Perkins, M.A., Toxicol. in Vitro 5, 563 (1991).Google Scholar
Kmiec, Z., Adv. Anat. Embryol. Cell Biol. 161, III (2001).Google Scholar
Coon, M.J., Ding, X.X., Pernecky, S.J., Vaz, A.D., FASEB J. 6, 669 (1992).Google Scholar
Bhushan, A., Senutovitch, N., Bale, S.S., McCarty, W.J., Hegde, M., Jindal, R., Golberg, I., Berk Usta, O., Yarmush, M.L., Vernetti, L., Gough, A., Bakan, A., Shun, T., Biasio, R., Lansing Taylor, D., Stem Cell Res. Ther. 4 (Suppl. 1), S16 (2013).Google Scholar
Kostadinova, R., Boess, F., Applegate, D., Suter, L., Wieser, T., Singer, T., Naughton, B., Roth, A., Toxicol. Appl. Pharmacol. 268, 1 (2013).Google Scholar
Kermanizadeh, A., Pojana, G., Gaiser, B.K., Birkedal, R., Bilanicova, D., Wallin, H., Jensen, K.A., Sellergren, B., Hutchison, G.R., Marcomini, A., Stone, V., Nanotoxicology 7, 301 (2013).Google Scholar
Hermanns, M.I., Kasper, J., Dubruel, P., Pohl, C., Uboldi, C., Vermeersch, V., Fuchs, S., Unger, R.E., Kirkpatrick, C.J., J. R. Soc. Interface 7 (Suppl. 1), S41 (2010).Google Scholar
Rothen-Rutishauser, B., Blank, F., Muhlfeld, C., Gehr, P., Expert Opin. Drug Metab. Toxicol. 4, 1075 (2008).CrossRefGoogle Scholar
Alfaro-Moreno, E., Nawrot, T.S., Vanaudenaerde, B.M., Hoylaerts, M.F., Vanoirbeek, J.A., Nemery, B., Hoet, P.H., Eur. Respir. J. 32, 1184 (2008).Google Scholar
Lehmann, A.D., Blank, F., Baum, O., Gehr, P., Rothen-Rutishauser, B.M., Part. Fibre Toxicol. 6, 26 (2009).Google Scholar
Muller, L., Riediker, M., Wick, P., Mohr, M., Gehr, P., Rothen-Rutishauser, B., J. R. Soc. Interface 7 (Suppl. 1), S27 (2010).Google Scholar
Huh, D., Hamilton, G.A., Ingber, D.E., Trends Cell Biol. 21, 745 (2011).Google Scholar
Huh, D., Matthews, B.D., Mammoto, A., Monotoya-Zavala, M., Hsin, H.Y., Ingber, D.E., Science 328, 1662 (2010).Google Scholar
Huh, D., Leslie, D.C., Matthews, B.D.Fraser, J.P., Jurek, S., Hamilton, G.A., Thorneloe, K.S., McAlexander, M.A., Ingber, D.E., Sci. Transl. Med. 4, 159ra147 (2012).Google Scholar
Buerki-Thurnherr, T., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., Grieder, K., Wampfler, B., Mathur, S., Wick, P., Krug, H.F., Nanotoxicology 7, 402 (2013).Google Scholar
Tuomela, S., Autio, R., Buerki-Thurnherr, T., Arslan, O., Kunzmann, A., Andersson-Willman, B., Wick, P., Mathur, S., Scheynius, A., Krug, H.F., Fadeel, B., Lahesmaa, R., PLoS One 8, e68415 (2013).Google Scholar
Xia, T., Zhao, Y., Sager, T., George, S., Pokhrel, S., Li, N., Schoenfeld, D., Meng, H., Lin, S., Wang, X., Wang, M., Ji, Z., Zink, J.I., Madler, L., Castranova, V., Nel, A.E., ACS Nano 2, 2121 (2008).Google Scholar
Orr, G.A., Chrisler, W.B., Cassens, K.J., Tan, R., Tarasevich, B.J., Markillie, L.M., Zangar, R.C., Thrall, B.D., Nanotoxicology 5, 296 (2010).Google Scholar
Park, J.W., Henry, T.B., Ard, S., Menn, F.M., Compton, R.N., Salyer, G.S., Nanotoxicology 5, 168 (2010).Google Scholar
Enders, A.C., Blankenship, T.N., Adv. Drug Deliv. Rev. 38, 3 (1999).Google Scholar
Lanphear, B.P., Vorhees, C.V., Bellinger, D.C., PLoS Med. 2, e61 (2005).Google Scholar
Latzin, P., Roosli, M., Huss, A., Kuehni, C.E., Frey, U., Eur. Respir. J. 33, 594 (2009).Google Scholar
Menezes, V., Malek, A., Keelan, J.A., Curr. Pharm. Biotechnol. 12, 731 (2011).Google Scholar
Buerki-Thurnherr, T., von Mandach, U., Wick, P., Swiss Med. Wkly. 142, w13559 (2012).Google Scholar
Schneider, H., Panigel, M., Dancis, J., Am. J. Obstet. Gynecol. 114, 822 (1972).CrossRefGoogle Scholar
Panigel, M., Pascaud, M., Brun, J.L., J. Physiol. Paris 59, 277 (1967).Google Scholar
Saunders, M., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 671 (2009).Google Scholar
Bhabra, G., Sood, A., Fisher, B., Cartwright, L., Saunders, M., Evans, W.H., Surprenant, A., Lopez-Castejon, G., Mann, S., Davis, S.A., Hails, L.A., Ingham, E., Verkade, P., Lane, J., Heesom, K., Newson, R., Case, C.P., Nat. Nanotechnol. 4, 876 (2009).Google Scholar
Parry, M.C., Bhabra, G., Sood, A., Machado, F., Cartwright, L., Saunders, M., Ingham, E., Newson, R., Blom, A.W., Case, C.P., Biomaterials 31, 4477 (2010).Google Scholar
Zaga, V., Estrada-Guiterrez, G., Beltran-Montoya, J., Maida-Claros, R., Lopez-Vancell, R., Vadillo-Ortega, F., Biol. Reprod. 71, 1296 (2004).Google Scholar
Prouillac, C., Lecoeur, S., Drug Metab. Dispos. 38, 1623 (2010).Google Scholar
Sackmann, E.K., Fulton, A.L., Beebe, D.J., Nature 507, 181 (2014).Google Scholar
Kelm, J.M., Lorber, V., Snedeker, J.G., Schmidt, D., Broggini-Tenzer, A., Weisstanner, M., Odermatt, B., Mol, A., Zund, G., Hoerstrup, S.P., J. Biotechnol. 148, 46 (2010).Google Scholar
Tian, F., Razansky, D., Estrada, G.G., Semmler-Behnke, M., Beyerle, A., Kreyling, W., Ntziachristos, V., Stoeger, T., Inhal. Toxicol. 21 (Suppl. 1), 92 (2009).Google Scholar
Yamashita, K., Yoshioka, Y., Higashisaka, K., Morishita, Y., Yoshida, T., Fujimura, M., Kayamuro, H., Nabeshi, H., Yamashita, T., Nagano, K., Abe, Y., Kamada, H., Kawai, Y., Mayumi, T., Yoshikawa, T., Itoh, N., Tsunoda, S., Tsutsumi, Y., Inflammation 33, 276 (2010).Google Scholar
Chu, M., Wu, Q., Yang, H., Yuan, R., Hou, S., Yang, Y., Zou, Y., Xu, S., Xu, K., Ji, A., Sheng, L., Small 6, 670 (2010).Google Scholar
Pietroiusti, A., Massimiani, M., Fenoglio, I., Colonna, M., Valentini, F., Palleschi, G., Camaioni, A., Magrini, A., Siracusa, G., Bergamaschi, A., Sgambato, A., Campagnolo, L., ACS Nano 5, 4624 (2011).Google Scholar
Pietroiusti, A., Campagnolo, L., Fadeel, B., Small 9, 1557 (2012).CrossRefGoogle Scholar
Clift, M.J., Gehr, P., Rothen-Rutishauser, B., Arch. Toxicol. (2010).Google Scholar
Mahmoudi, M., Sahraian, M.A., Shokrgozar, M.A., Laurent, S., ACS Chem. Neurosci. 2 (3), 118 (2011).Google Scholar