Skip to main content Accessibility help
×
Home

Article contents

Understanding mechanical behavior and reliability of organic electronic materials

Published online by Cambridge University Press:  02 February 2017

Jae-Han Kim
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea; jaehan.kim@kaist.ac.kr
Inhwa Lee
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea; inhwa@kaist.ac.kr
Taek-Soo Kim
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea; tskim1@kaist.ac.kr
Nicholas Rolston
Affiliation:
Department of Applied Physics, Stanford University, USA; rolston@stanford.edu
Brian L. Watson
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; brian.watson@stanford.edu
Reinhold H. Dauskardt
Affiliation:
Department of Materials Science and Engineering, Stanford University, USA; dauskardt@stanford.edu
Get access

Abstract

The mechanical properties of organic electronic materials and interfaces play a central role in determining the manufacturability and reliability of flexible and stretchable organic electronic devices. The synergistic effects of mechanical stress and deformation, together with other operating parameters such as temperature and temperature cycling, and exposure to solar radiation, moisture, and other environmental species are particularly important for longer-term device stability. We review recent studies of basic mechanical properties such as adhesion and cohesion, stiffness, yield behavior, and ductility of organic semiconducting materials, and their connection to underlying molecular structure. We highlight thin-film metrologies to probe the mechanical behavior, including when subjected to simulated operational conditions. We also report on strategies for improving reliability through interface engineering and tailoring material chemistry and molecular structure. These studies provide insights into how these metrologies and metrics inform the development of materials and devices for improved reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Brand, V., Bruner, C., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 99, 182 (2012).CrossRef
Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N., Eng. Fract. Mech. 61, 141 (1998).CrossRef
Hutchinson, J.W., Suo, Z., Adv. Appl. Mech. 29, 63 (1991).CrossRef
Bruner, C., Dauskardt, R., Macromolecules 47, 1117 (2014).CrossRef
Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Van Landingham, M.R., Kim, H.C., Volksen, W., Miller, R.D., Simonyi, E.E., Nat. Mater. 3, 545 (2004).CrossRef
O’Connor, B., Chan, E.P., Chan, C., Conrad, B.R., Richter, L.J., Kline, R.J., Heeney, M., McCulloch, I., Soles, C.L., De Longchamp, D.M., ACS Nano 4, 7538 (2010).CrossRef
Kim, J.-H., Nizami, A., Hwangbo, Y., Jang, B., Lee, H.-J., Woo, C.-S., Hyun, S., Kim, T.-S., Nat. Commun. 4, 2520 (2013).
Suo, Z., Prévost, J.H., Liang, J., J. Mech. Phys. Solids 51, 2169 (2003).CrossRef
Jørgensen, M., Norrman, K., Krebs, F.C., Sol. Energy Mater. Sol. Cells 92, 686 (2008).CrossRef
Dupont, S.R., Oliver, M., Krebs, F.C., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 97, 171 (2012).CrossRef
Dupont, S.R., Novoa, F., Voroshazi, E., Dauskardt, R.H., Adv. Funct. Mater. 24, 1325 (2014).CrossRef
Balcaen, V., Rolston, N., Dupont, S.R., Voroshazi, E., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 143, 418 (2015).CrossRef
Rolston, N., Watson, B.L., Bailie, C.D., McGehee, M.D., Bastos, J.P., Gehlhaar, R., Kim, J.E., Vak, D., Mallajosyula, A.T., Gupta, G., Mohite, A.D., Dauskardt, R.H., Extreme Mech. Lett. 9, 353 (2016).CrossRef
Watson, B.L., Rolston, N., Bush, K.A., Leijtens, T., McGehee, M.D., Dauskardt, R.H., ACS Appl. Mater. Interfaces 8, 25896 (2016).CrossRef
Dupont, S.R., Voroshazi, E., Nordlund, D., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 132, 443 (2015).CrossRef
Awartani, O., Lemanski, B.I., Ro, H.W., Richter, L.J., De Longchamp, D.M., O’Connor, B.T., Adv. Energy Mater. 3, 399 (2013).CrossRef
Tank, D., Lee, H.H., Khang, D.Y., Macromolecules 42, 7079 (2009).
Savagatrup, S., Makaram, A.S., Burke, D.J., Lipomi, D.J., Adv. Funct. Mater. 24, 1169 (2014).CrossRef
Roth, B., Savagatrup, S., De Los Santos, N.V., Hagemann, O., Carlé, J.E., Helgesen, M., Livi, F., Bundgaard, E., Søndergaard, R.R., Krebs, F.C., Lipomi, D.J., Chem. Mater. 28, 2363 (2016).CrossRef
Savagatrup, S., Chan, E., Renteria-Garcia, S.M., Printz, A.D., Zaretski, A.V., O’Connor, T.F., Rodriquez, D., Valle, E., Lipomi, D.J., Adv. Funct. Mater. 25, 427 (2015).CrossRef
Lipomi, D.J., Chong, H., Vosgueritchian, M., Mei, J., Bao, Z., Sol. Energy Mater. Sol. Cells 107, 355 (2012).CrossRef
Kim, J.S., Kim, J.H., Lee, W., Yu, H., Kim, H.J., Song, I., Shin, M., Oh, J.H., Jeong, U., Kim, T.S., Kim, B.J., Macromolecules 48, 4339 (2015).CrossRefPubMed
Kim, T., Kim, J.-H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T.-S., Kim, B.J., Nat. Commun. 6, 8547 (2015).CrossRef
Printz, A.D., Chiang, A.S.C., Savagatrup, S., Lipomi, D.J., Synth. Met. 217, 144 (2016).CrossRef
Dupont, S.R., Voroshazi, E., Heremans, P., Dauskardt, R.H., Proc. IEEE Photovolt. Spec. Conf. (2012), pp. 32593262.
Krebs, F.C., Gevorgyan, S.A., Alstrup, J., J. Mater. Chem. 19, 5442 (2009).CrossRef
Kook, S.Y., Dauskardt, R.H., J. Appl. Phys. 91, 1293 (2002).CrossRef
Lane, M.W., Snodgrass, J.M., Dauskardt, R.H., Microelectron. Reliab. 41, 1615 (2001).CrossRef
Cai, C., Miller, D.C., Tappan, I.A., Dauskardt, R.H., Sol. Energy Mater. Sol. Cells 157, 346 (2016).CrossRef
Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., Fréchet, J.M.J., Adv. Mater. 15, 1519 (2003).CrossRef
Zen, A., Saphiannikova, M., Neher, D., Grenzer, J., Grigorian, S., Pietsch, U., Asawapirom, U., Janietz, S., Scherf, U., Lieberwirth, I., Wegner, G., Macromolecules 39, 2162 (2006).CrossRef
Koppe, M., Brabec, C.J., Heiml, S., Schausberger, A., Duffy, W., Heeney, M., McCulloch, I., Macromolecules 42, 4661 (2009).CrossRef
Ma, W., Kim, J.Y., Lee, K., Heeger, A.J., Macromol. Rapid Commun. 28, 1776 (2007).CrossRef
Tummala, N.R., Bruner, C., Risko, C., Brédas, J.L., Dauskardt, R.H., ACS Appl. Mater. Interfaces 7, 9957 (2015).CrossRef
Tummala, N.R., Risko, C., Bruner, C., Dauskardt, R.H., Brédas, J.L., J. Polym. Sci. B Polym. Phys. 53, 934 (2015).CrossRef
Dupont, S.R., Voroshazi, E., Nordlund, D., Vandewal, K., Dauskardt, R.H., Adv. Mater. Interfaces 1, 1400135 (2014).CrossRef
Yun, J.H., Lee, I., Kim, T.-S., Ko, M.J., Kim, J.Y., Son, H.J., J. Mater. Chem. A 3, 22176 (2015).CrossRef
Cai, C., Dauskardt, R.H., Nano Lett. 15, 6751 (2015).CrossRef

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 150
Total number of PDF views: 663 *
View data table for this chart

* Views captured on Cambridge Core between 02nd February 2017 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-7fh6l Total loading time: 0.997 Render date: 2021-01-20T08:12:21.738Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Understanding mechanical behavior and reliability of organic electronic materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Understanding mechanical behavior and reliability of organic electronic materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Understanding mechanical behavior and reliability of organic electronic materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *