Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.349 Render date: 2021-02-28T11:06:13.257Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique

Published online by Cambridge University Press:  09 May 2019

Felix Hofmann
Affiliation:
Department of Engineering Science, University of Oxford, UK; felix.hofmann@eng.ox.ac.uk
Michael P. Short
Affiliation:
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; hereiam@mit.edu
Cody A. Dennett
Affiliation:
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; cdennett@mit.edu
Corresponding
Get access

Abstract

Structure–property relationships are the foundation of materials science and are essential for predicting material response to driving forces, managing in-service material degradation, and engineering materials for optimal performance. Elastic, thermal, and acoustic properties provide a convenient gateway to directly or indirectly probe materials structure across multiple length scales. This article will review how using the laser-induced transient grating spectroscopy (TGS) technique, which uses a transient diffraction grating to generate surface acoustic waves and temperature gratings on a material surface, nondestructively reveals the material’s elasticity, thermal diffusivity, and energy dissipation on the sub-microsecond time scale, within a tunable subsurface depth. This technique has already been applied to many challenging problems in materials characterization, from analysis of radiation damage, to colloidal crystals, to phonon-mediated thermal transport in nanostructured systems, to crystal orientation and lattice parameter determination. Examples of these applications, as well as inferring aspects of microstructural evolution, illustrate the wide potential reach of TGS to solve old materials challenges and to uncover new science. We conclude by looking ahead at the tremendous potential of TGS for materials discovery and optimization when applied in situ to dynamically evolving systems.

Type
Acoustic Processes in Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Tanenbaum, M., Mills, A.D., J. Electrochem. Soc. 108, 171 (1961).CrossRefGoogle Scholar
Jonas, J.J., Sellars, C.M., Tegart, W.J.M., Metall. Rev. 14, 1 (1969).Google Scholar
Ishihara, T., Matsuda, H., Takita, Y., J. Am. Chem. Soc. 116, 3801 (1994).CrossRefGoogle Scholar
Harris, A.M., Lee, E.C., J. Appl. Polym. Sci. 107, 2246 (2008).CrossRefGoogle Scholar
Li, Y.J., Savan, A., Kostka, A., Stein, H.S., Ludwig, A., Mater. Horiz. 5, 86 (2018).CrossRefGoogle Scholar
Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O., Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
Hosemann, P., Scr. Mater. 143, 161 (2018).CrossRefGoogle Scholar
Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G., Pharr, G.M., Scr. Mater. 57, 397 (2007).CrossRefGoogle Scholar
De Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).CrossRefGoogle Scholar
Hofmann, F., Tarleton, E., Harder, R.J., Phillips, N.W., Ma, P.-W.W., Clark, J.N., Robinson, I.K., Abbey, B., Liu, W., Beck, C.E., Sci. Rep. 7, 45993 (2017).CrossRefGoogle Scholar
Donnelly, C., Guizar-Sicairos, M., Scagnoli, V., Gliga, S., Holler, M., Raabe, J., Heyderman, L.J., Nature 547, 328 (2017).CrossRefGoogle Scholar
Ulvestad, A., Singer, A., Clark, J.N., Cho, H.M., Kim, J.W., Harder, R., Maser, J., Meng, Y.S., Shpyrko, O.G., Science 348, 1344 (2015).CrossRefGoogle Scholar
Wright, R.N., Sham, T.-L., “Status of Metallic Structural Materials for Molten Salt Reactors” (2018), doi:INL/EXT-18–45171.Google Scholar
Corwin, W.R., Lucas, G.E., in ASTM Symposium on the Use of Nonstandard Subsized Specimens for Irradiated Testing (ASTM, Philadelphia, PA, 1986), p. 379, https://inis.iaea.org/search/search.aspx?orig_q=RN:18065732.Google Scholar
Tanguy, B., Besson, J., Piques, R., Pineau, A., Eng. Fract. Mech. 72, 49 (2005).CrossRefGoogle Scholar
Server, W.L., Nanstad, R.K., Odette, G.R., “Use of Reactor Pressure Vessel Surveillance Materials for Extended Life Evaluations Using Power and Test Reactor Irradiations” (2012), https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/070/43070853.pdf.Google Scholar
Onizawa, K., Fukaya, K., Nishiyama, Y., Suzuki, M., Kaihara, S., Nakamura, T., Int. J. Press. Vessels Pip. 70, 201 (1997).CrossRefGoogle Scholar
Getto, E., Sun, K., Monterrosa, A.M., Jiao, Z., Hackett, M.J., Was, G.S., J. Nucl. Mater. 480, 159 (2016).CrossRefGoogle Scholar
Garner, F.A., Toloczko, M.B., J. Nucl. Mater. 251, 252 (1997).CrossRefGoogle Scholar
Wang, Y., Yousefzadeh, B., Chen, H., Nassar, H., Huang, G., Daraio, C., Phys. Rev. Lett. 121, 194301 (2018).CrossRefGoogle Scholar
Cha, J., Daraio, C., Nat. Nanotechnol. 13, 1016 (2018).CrossRefGoogle Scholar
Dyre, J.C., Rev. Mod. Phys. 78, 953 (2006).CrossRefGoogle Scholar
Tanaka, H., Kawasaki, T., Shintani, H., Watanabe, K., Nat. Mater. 9, 324 (2010).CrossRefGoogle Scholar
Boechler, N., Theocharis, G., Daraio, C., Nat. Mater. 10, 665 (2011).CrossRefGoogle Scholar
Nesterenko, V.F., Dynamics of Heterogeneous Materials (Springer, New York, 2001).CrossRefGoogle Scholar
Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
Ryder, M.R., Civalleri, B., Tan, J.C., Phys. Chem. Chem. Phys. 18, 9079 (2016).CrossRefGoogle Scholar
Tan, J.C., Civalleri, B., Lin, C.C., Valenzano, L., Galvelis, R., Chen, P.F., Bennett, T.D., Mellot-Draznieks, C., Zicovich-Wilson, C.M., Cheetham, A.K., Phys. Rev. Lett. 108, 095502 (2012).CrossRefGoogle Scholar
Ryder, M.R., Civalleri, B., Cinque, G., Tan, J.C., CrystEngComm 18, 4303 (2016).CrossRefGoogle Scholar
Maznev, A.A., Mazurenko, A., Zhuoyun, L., Gostein, M., Rev. Sci. Instrum. 74, 667 (2003).CrossRefGoogle Scholar
Maznev, A.A., Nelson, K.A., Rogers, J.A., Opt. Lett. 23, 1319 (1998).CrossRefGoogle Scholar
Johnson, J.A., Maznev, A.A., Bulsara, M.T., Fitzgerald, E.A., Harman, T.C., Calawa, S., Vinels, C.J., Turner, G., Nelson, K.A., J. Appl. Phys. 111, 023503 (2012).CrossRefGoogle Scholar
Nelson, K.A., Casalegno, R., Miller, R.J.D., Fayer, M.D., J. Chem. Phys. 77, 1144 (1982).CrossRefGoogle Scholar
Dennett, C.A., Short, M.P., Appl. Phys. Lett. 110, 211106 (2017).CrossRefGoogle Scholar
Hofmann, F., Mason, D.R., Eliason, J.K., Maznev, A.A., Nelson, K.A., Dudarev, S.L., Sci. Rep. 5, 16042 (2015).CrossRefGoogle Scholar
Peter, G.M., Nanotechnology 16, 995 (2005).Google Scholar
Every, A.G., Kim, K.Y., Maznev, A.A., J. Acoust. Soc. Am. 102, 1346 (1997).CrossRefGoogle Scholar
Favretto-Cristini, N., Komatitsch, D., Carcione, J.M., Cavallini, F., Ultrasonics 51, 653 (2011).CrossRefGoogle Scholar
Du, X., Zhao, J.C., npj Comput. Mater. 3 (2017), doi:10.1038/s41524–017–0019-x.CrossRefGoogle Scholar
Every, A.G., Maznev, A.A., Grill, W., Pluta, M., Comins, J.D., Wright, O.B., Matsuda, O., Sachse, W., Wolfe, J.P., Wave Motion 50, 1197 (2013).CrossRefGoogle Scholar
Brown, J.M., Ultrasonics 90, 23 (2018).CrossRefGoogle Scholar
Käding, O.W., Skurk, H., Maznev, A.A., Matthias, E., Appl. Phys. A 61, 253 (1995).CrossRefGoogle Scholar
Dennett, C.A., Short, M.P., J. Appl. Phys. 123, 215109 (2018).CrossRefGoogle Scholar
Royer, D., Dieulesaint, E., J. Acoust. Soc. Am. 76, 1438 (1984).CrossRefGoogle Scholar
Goossens, J., Leclaire, P., Xu, X., Glorieux, C., Martinez, L., Sola, A., Siligardi, C., Cannillo, V., Van der Donck, T., Celis, J.-P., J. Appl. Phys. 102, 053508 (2007).CrossRefGoogle Scholar
Rogers, J.A., Fuchs, M., Banet, M.J., Hanselman, J.B., Logan, R., Nelson, K.A., Appl. Phys. Lett. 71, 225 (1997).CrossRefGoogle Scholar
Vega-Flick, A., Eliason, J.K., Maznev, A.A., Khanolkar, A., Abi Ghanem, M., Boechler, N., Alvarado-Gil, J.J., Nelson, K.A., Rev. Sci. Instrum. 86 (2015), doi:10.1063/1.4936767.CrossRefGoogle Scholar
Dennett, C.A., Cao, P., Ferry, S.E., Vega-Flick, A., Maznev, A.A., Nelson, K.A., Every, A.G., Short, M.P., Phys. Rev. B 94, 214106 (2016).CrossRefGoogle Scholar
Dienes, G.J., Phys. Rev. 86, 228 (1952).CrossRefGoogle Scholar
Folweiler, R.G., Brotzen, F.R., Acta Metall . 7, 716 (1959).CrossRefGoogle Scholar
Dieckamp, H., Sosin, A., J. Appl. Phys. 27, 1416 (1956).CrossRefGoogle Scholar
Du, X., Zhao, J.C., Scr. Mater. 152, 24 (2018).CrossRefGoogle Scholar
Gasteau, D., Chigarev, N., Ducousso-Ganjehi, L., Gusev, V.E., Jenson, F., Calmon, P., Tournat, V., J. Appl. Phys. 119, 43103 (2016).CrossRefGoogle Scholar
Xu, Y., Aizawa, T., Kihara, J., Mater. Trans. JIM 38, 536 (1997).CrossRefGoogle Scholar
Li, D.Y., Szpunar, J.A., Acta Metall. Mater. 40, 3277 (1992).CrossRefGoogle Scholar
Hofmann, F., Nguyen-Manh, D., Gilbert, M.R., Beck, C.E., Eliason, J.K., Maznev, A.A., Liu, W., Armstrong, D.E.J., Nelson, K.A., Dudarev, S.L., Acta Mater . 89, 352 (2015).CrossRefGoogle Scholar
Rieth, M., Dudarev, S.L., Gonzalez de Vicente, S.M., Aktaa, J., Ahlgren, T., Antusch, S., Armstrong, D.E.J., Balden, M., Baluc, N., Barthe, M.-F., Basuki, W.W., Battabyal, M., Becquart, C.S.. Blagoeva, D., Boldyryeva, H., Brinkmann, J., Celino, M., Ciupinski, L., Correia, J.B., De Backer, A., Domain, C., Gaganidze, E., García-Rosales, C., Gibson, J., Gilbert, M.R., Giusepponi, S., Gludovatz, B., Greuner, H., Heinola, K., Höschen, T., Hoffmann, A., Holstein, N., Koch, F., Krauss, W., Li, H., Lindig, S., Linke, J., Linsmeier, Ch., López-Ruiz, P., Maier, H., Matejicek, J., Mishra, T.P., Muhammed, M., Muñoz, A., Muzyk, M., Nordlund, K., Nguyen-Manh, D., Opschoor, J., Ordás, N., Palacios, T., Pintsuk, G., Pippan, R., Reiser, J., Riesch, J., Roberts, S.G., Romaner, L., Rosiński, M., Sanchez, M., Schulmeyer, W., Traxler, H., Ureña, A., van der Laan, J.G., Veleva, L., Wahlberg, S., Walter, M., Weber, T., Weitkamp, T., Wurster, S., Yar, M.A., You, J.H., Zivelonghi, A., J. Nucl. Mater. 432, 482 (2013).CrossRefGoogle Scholar
Zhou, Z., Dudarev, S.L., Jenkins, M.L., Sutton, A.P., Kirk, M.A., J. Nucl. Mater. 367, P, 305 (2007).CrossRefGoogle Scholar
Armstrong, D.E.J., Edmondson, P.D., Roberts, S.G., Appl. Phys. Lett. 102, 1 (2013).CrossRefGoogle Scholar
Duncan, R.A., Hofmann, F., Vega-Flick, A., Eliason, J.K., Maznev, A.A., Every, A.G., Nelson, K.A., Appl. Phys. Lett. 109, 151906 (2016).CrossRefGoogle Scholar
Dennett, C.A., So, K.P., Kushima, A., Buller, D.L., Hattar, K., Short, M.P., Acta Mater . 145, 496 (2018).CrossRefGoogle Scholar
Dennett, C.A., Buller, D.L., Hattar, K., Short, M.P., Nucl. Instrum. Methods Phys. Res. B 440, 126 (2019).CrossRefGoogle Scholar
Friedel, J., London, Edinburgh Dublin Philos. Mag. J. Sci. 44, 444 (1953).CrossRefGoogle Scholar
Parkin, D., Goldstone, J., Simpson, H., Hemsky, J., J. Phys. F Met. Phys. 17, 577 (1987).CrossRefGoogle Scholar
Li, N., Hattar, K., Misra, A., J. Nucl. Mater. 439, 185 (2013).CrossRefGoogle Scholar
Boechler, N., Eliason, J.K., Kumar, A., Maznev, A.A., Nelson, K.A., Fang, N., Phys. Rev. Lett. 111, 036103 (2013).CrossRefGoogle Scholar
Otsuka, P.H., Mezil, S., Matsuda, O., Tomoda, M., Maznev, A.A., Gan, T., Fang, N., Boechler, N., Gusev, V.E., Wright, O.B., New J. Phys. 20, 013026 (2018).CrossRefGoogle Scholar
Hiraiwa, M., Abi Ghanem, M., Wallen, S.P., Khanolkar, A., Maznev, A.A., Boechler, N., Phys. Rev. Lett. 116, 198001 (2016).CrossRefGoogle Scholar
Eliason, J.K., Vega-Flick, A., Hiraiwa, M., Khanolkar, A., Gan, T., Boechler, N., Fang, N., Nelson, K.A., Maznev, A.A., Appl. Phys. Lett. 108, 061907 (2016).CrossRefGoogle Scholar
Norajitra, P., Giniyatulin, R., Hirai, T., Krauss, W., Kuznetsov, V., Mazul, I., Ovchinnikov, I., Reiser, J., Ritz, G., Ritzhaupt-Kleissl, H.J., Widak, V., Fusion Eng. Des. 84, 1429 (2009).CrossRefGoogle Scholar
Norajitra, P., Antusch, S., Giniyatulin, R., Kuznetsov, V., Mazul, I., Ritzhaupt-Kleissl, H.J., Spatafora, L., Fusion Eng. Des. 86, 1656 (2011).CrossRefGoogle Scholar
Ziman, J.M., Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, UK, 2001).CrossRefGoogle Scholar
Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R., J. Appl. Phys. 93, 793 (2003).CrossRefGoogle Scholar
Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L., Appl. Phys. Rev. 1, 011305 (2014).CrossRefGoogle Scholar
Derlet, P.M., Nguyen-Manh, D., Dudarev, S.L., Phys. Rev. B 76, 54107 (2007).CrossRefGoogle Scholar
Nordlund, K., Zinkle, S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R.E., Suzudo, T., Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L., Simeone, D., J. Nucl. Mater. 512, 450 (2018).CrossRefGoogle Scholar
Sand, A.E., Byggmästar, J., Zitting, A., Nordlund, K., J. Nucl. Mater. 511, 64 (2018).CrossRefGoogle Scholar
Ferry, S.E., “Breaking the Bottleneck in Radiation Materials Science with Transient Grating Spectroscopy,” PhD thesis, Massachusetts Institute of Technology (2018).Google Scholar
Loomis, B.A., Gerber, S.B., Acta Metall . 21, 165 (1973).CrossRefGoogle Scholar
Fujitsuka, M., Tsuchiya, B., Mutoh, I., Tanabe, T., Shikama, T., J. Nucl. Mater. 283, (Pt.2), 1148 (2000).CrossRefGoogle Scholar
Roedig, M., Kuehnlein, W., Linke, J., Pitzer, D., Merola, M., Rigal, E., Schedler, B., Visca, E., J. Nucl. Mater. 329, 766 (2004).CrossRefGoogle Scholar
Peacock, A.T., Barabash, V., Dänner, W., Rödig, M., Lorenzetto, P., Marmy, P., Merola, M., Singh, B.N., Tähtinen, S., van der Laan, J., Wu, C.H., J. Nucl. Mater. 329, 173 (2004).CrossRefGoogle Scholar
Blakemore, J.S., Solid State Physics, 2nd ed. (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
Johnson, J.A., Maznev, A.A., Cuffe, J., Eliason, J.K., Minnich, A.J., Kehoe, T., Torres, C.M.S., Chen, G., Nelson, K.A., Phys. Rev. Lett. 110, 25901 (2013).CrossRefGoogle Scholar
Huberman, S., Chiloyan, V., Duncan, R.A., Zeng, L., Jia, R., Maznev, A.A., Fitzgerald, E.A., Nelson, K.A., Chen, G., Phys. Rev. Mater. 1, 054601 (2017).CrossRefGoogle Scholar
Johnson, J.A., Eliason, J.K., Maznev, A.A., Luo, T., Nelson, K.A., J. Appl. Phys. 118 (2015), doi:10.1063/1.4933285.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 147
Total number of PDF views: 415 *
View data table for this chart

* Views captured on Cambridge Core between 09th May 2019 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *