Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T15:48:32.922Z Has data issue: false hasContentIssue false

Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology

Published online by Cambridge University Press:  08 December 2017

Nadrian C. Seeman
Affiliation:
New York University, USA; ncs1@nyu.edu
Oleg Gang
Affiliation:
Department of Chemical Engineering, and Department of Applied Physics and Applied Mathematics, Columbia University, USA; og2226@columbia.edu
Get access

Abstract

Structural DNA nanotechnology has been particularly driven toward three-dimensional (3D) construction since its inception at the start of the 1980s. Part of the driving force was the goal of building specific crystals from macromolecular components, without having to use trial and error for determining appropriate crystallization conditions. With the first demonstration of DNA attachment to gold nanoparticles in the 1990s, DNA became a player in inorganic nanomaterials as a programmable agent for structure assembly. For pure DNA structures, the crystallization goal has been mediated by sticky-ended cohesion with some success, although trial and error crystallizations have produced better diffracting crystals than those directed self-assembly. For nanoparticles, different types of 3D nanoscale crystalline organizations have been realized. Recent efforts not only expand the diversity of particle lattices, but also strive to achieve designed lattice symmetries and their transformations. In this article, we review the development of 3D assembly of DNA and DNA-guided nanoparticle arrays, the issues that have prevented and facilitated formation of such structures, and recent strategies toward this goal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seeman, N.C., J. Theor. Biol. 99, 237 (1982).Google Scholar
Chen, J., Seeman, N.C., Nature 350, 631 (1991).CrossRefGoogle Scholar
Zhang, Y., Seeman, N.C., J. Am. Chem. Soc. 116, 1661 (1994).Google Scholar
Fu, T.J., Seeman, N.C., Biochemistry 32, 3211 (1993).Google Scholar
Li, X., Yang, X., Qi, J., Seeman, N.C., J. Am. Chem. Soc. 118, 6131 (1996).Google Scholar
Sa-Ardyen, P., Vologodskii, A.V., Seeman, N.C., Biophys. J. 84, 3829 (2003).CrossRefGoogle Scholar
Yang, X., Wenzler, L.A., Qi, J., Li, X., Seeman, N.C., J. Am. Chem. Soc. 120, 9779 (1998).Google Scholar
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C., Nature 394, 539 (1998).Google Scholar
LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C., J. Am. Chem. Soc. 122, 1848 (2000).CrossRefGoogle Scholar
Mao, C., Sun, W., Seeman, N.C., J. Am. Chem. Soc. 121, 5437 (1999).CrossRefGoogle Scholar
Alivisatos, A.P., Johnsson, K.P., Peng, X.G., Wilson, T.E., Loweth, C.J., Bruchez, M.P., Schultz, P.G., Nature 382, 609 (1996).CrossRefGoogle Scholar
Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature 382, 607 (1996).Google Scholar
Nykypanchuk, D., Maye, M.M., van der Lelie, D., Gang, O., Nature 451, 549 (2008).Google Scholar
Xiong, H.M., van der Lelie, D., Gang, O., J. Am. Chem. Soc. 130, 2442 (2008).Google Scholar
Park, S.Y., Lytton-Jean, A.K.R., Lee, B., Weigand, S., Schatz, G.C., Mirkin, C.A., Nature 451, 553 (2008).Google Scholar
Tkachenko, A.V., Phys. Rev. Lett. 89, 148303 (2002).Google Scholar
Xiong, H.M., van der Lelie, D., Gang, O., Phys. Rev. Lett. 102, 015504 (2009).Google Scholar
Macfarlane, R.J., Jones, M.R., Senesi, A.J., Young, K.L., Lee, B., Wu, J.S., Mirkin, C.A., Angew. Chem. Int. Ed. Engl. 49, 4589 (2010).Google Scholar
Srinivasan, B., Vo, T., Zhang, Y.G., Gang, O., Kumar, S., Venkatasubramanian, V., Proc. Natl Acad Sci U.S.A. 110, 18431 (2013).Google Scholar
Vo, T., Venkatasubramanian, V., Kumar, S., Srinivasan, B., Pal, S., Zhang, Y.G., Gang, O., Proc. Natl. Acad. Sci. U.S.A. 112, 4982 (2015).Google Scholar
Sun, D.Z., Gang, O., J. Am. Chem. Soc. 133, 5252 (2011).Google Scholar
Zhang, Y.G., Lu, F., Yager, K.G., van der Lelie, D., Gang, O., Nat. Nanotechnol. 8, 865 (2013).Google Scholar
Zhang, C., Macfarlane, R.J., Young, K.L., Choi, C.H.J., Hao, L.L., Auyeung, E., Liu, G.L., Zhou, X.Z., Mirkin, C.A., Nat. Mater. 12, 741 (2013).Google Scholar
Diao, Y., Zhou, Y., Kurosawa, T., Shaw, L., Wang, C., Park, S., Guo, Y., Reinspach, J.A., Gu, K., Gu, X., Tee, B.C.K., Pang, C., Yan, H., Zhao, D., Toney, M.F., Mannsfeld, S.C.B., Bao, Z., Nat. Commun. 6, 7955 (2015).Google Scholar
Heuer-Jungemann, A., Kirkwood, R., El-Sagheer, A.H., Brown, T., Kanaras, A.G., Nanoscale 5, 7209 (2013).Google Scholar
Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C., J. Am. Chem. Soc. 126, 2324 (2004).Google Scholar
Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C., Nature 461, 74 (2009).Google Scholar
Paukstelis, P.J., Nowakowski, J., Birktoft, J.J., Seeman, N.C., Chem. Biol. 11, 1119 (2004).Google Scholar
Simmons, C.R., Zhang, F., Birktoft, J.J., Qi, X., Han, D., Liu, Y., Sha, R., Abdallah, H.O., Hernandez, C., Ohayon, Y.P., Seeman, N.C., Yan, H., J. Am. Chem. Soc. 138, 10047 (2016).CrossRefGoogle Scholar
Nguyen, N., Birktoft, J.J., Sha, R., Wang, T., Zheng, J., Constantinou, P.E., Ginell, S.L., Chen, Y., Mao, C., Seeman, N.C., J. Mol. Recognit. 25, 494 (2012).CrossRefGoogle Scholar
Wang, T., Sha, R., Birktoft, J., Zheng, J., Mao, C., Seeman, N.C., J. Am. Chem. Soc. 132, 15471 (2010).Google Scholar
Hao, Y., Kristiansen, M., Sha, R., Birktoft, J.J., Hernandez, C., Mao, C., Seeman, N.C., Nat. Chem. 9, 824 (2017).CrossRefGoogle Scholar
Wang, X., Sha, R., Kristiansen, M., Hernandez, C., Hao, Y., Mao, C., Canary, J.W., Seeman, N.C., Angew. Chem. Int. Ed. Engl. 56, 6445 (2017).Google Scholar
Rusling, D.A., Chandrasekaran, A.R., Ohayon, Y.P., Brown, T., Fox, K.R., Sha, R., Mao, C., Seeman, N.C., Angew. Chem. Int. Ed. Engl. 53, 3979 (2014).Google Scholar
Jones, M.R., Macfarlane, R.J., Lee, B., Zhang, J., Young, K.L., Senesi, A.J., Mirkin, C.A., Nat. Mater. 9, 913 (2010).Google Scholar
Vial, S., Nykypanchuk, D., Yager, K.G., Tkachenko, A.V., Gang, O., ACS Nano 7, 5437 (2013).Google Scholar
Lu, F., Yager, K.G., Zhang, Y., Xin, H., Gang, O., Nat. Commun. 6, 6912 (2015).Google Scholar
Tian, Y., Wang, T., Liu, W.Y., Xin, H.L., Li, H.L., Ke, Y.G., Shih, W.M., Gang, O., Nat. Nanotechnol. 10, 637 (2015).Google Scholar
Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V., Gang, O., Science 351, 582 (2016).Google Scholar
Tian, Y., Zhang, Y., Wang, T., Xin, H.L., Li, H., Gang, O., Nat. Mater. 15, 654 (2016).Google Scholar
Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M., Nature 459, 414 (2009).Google Scholar
Licata, N.A., Tkachenko, A.V., Phys. Rev. E 79, 011404 (2009).Google Scholar
Li, Y.L., Liu, Z.Y., Yu, G.M., Jiang, W., Mao, C.D., J. Am. Chem. Soc. 137, 4320 (2015).Google Scholar
Liu, W.Y., Halverson, J., Tian, Y., Tkachenko, A.V., Gang, O., Nat. Chem. 8, 867 (2016).Google Scholar
Pal, S., Zhang, Y., Kumar, S.K., Gang, O., J. Am. Chem. Soc. 137, 4030 (2015).Google Scholar
Xiong, H., Sfeir, M.Y., Gang, O., Nano Lett. 10, 4456 (2010).Google Scholar
Tan, S.J., Kahn, J.S., Derrien, T.L., Campolongo, M.J., Zhao, M., Angew. Chem. Int. Ed. Engl. 53, 1316 (2014).Google Scholar
Srivastava, S., Nykypanchuk, D., Fukuto, M., Gang, O., ACS Nano 8, 9857 (2014).Google Scholar
Maye, M.M., Kumara, M.T., Nykypanchuk, D., Sherman, W.B., Gang, O., Nat. Nanotechnol. 5, 116 (2010).CrossRefGoogle Scholar
Zhang, Y., Srinivasan, B., Vo, T., Pal, S., Kumar, S., Gang, O., Nat. Mater. 14, 840 (2015).Google Scholar
Kim, Y., Macfarlane, R.J., Jones, M.R., Mirkin, C.A., Science 351, 579 (2016).Google Scholar
Seeman, N., Nature 421, 427 (2003).Google Scholar