Hostname: page-component-5db6c4db9b-qvlvc Total loading time: 0 Render date: 2023-03-24T11:15:06.844Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology

Published online by Cambridge University Press:  08 December 2017

Nadrian C. Seeman
Affiliation:
New York University, USA; ncs1@nyu.edu
Oleg Gang
Affiliation:
Department of Chemical Engineering, and Department of Applied Physics and Applied Mathematics, Columbia University, USA; og2226@columbia.edu
Get access

Abstract

Structural DNA nanotechnology has been particularly driven toward three-dimensional (3D) construction since its inception at the start of the 1980s. Part of the driving force was the goal of building specific crystals from macromolecular components, without having to use trial and error for determining appropriate crystallization conditions. With the first demonstration of DNA attachment to gold nanoparticles in the 1990s, DNA became a player in inorganic nanomaterials as a programmable agent for structure assembly. For pure DNA structures, the crystallization goal has been mediated by sticky-ended cohesion with some success, although trial and error crystallizations have produced better diffracting crystals than those directed self-assembly. For nanoparticles, different types of 3D nanoscale crystalline organizations have been realized. Recent efforts not only expand the diversity of particle lattices, but also strive to achieve designed lattice symmetries and their transformations. In this article, we review the development of 3D assembly of DNA and DNA-guided nanoparticle arrays, the issues that have prevented and facilitated formation of such structures, and recent strategies toward this goal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seeman, N.C., J. Theor. Biol. 99, 237 (1982).CrossRef
Chen, J., Seeman, N.C., Nature 350, 631 (1991).CrossRef
Zhang, Y., Seeman, N.C., J. Am. Chem. Soc. 116, 1661 (1994).CrossRef
Fu, T.J., Seeman, N.C., Biochemistry 32, 3211 (1993).CrossRef
Li, X., Yang, X., Qi, J., Seeman, N.C., J. Am. Chem. Soc. 118, 6131 (1996).CrossRef
Sa-Ardyen, P., Vologodskii, A.V., Seeman, N.C., Biophys. J. 84, 3829 (2003).CrossRef
Yang, X., Wenzler, L.A., Qi, J., Li, X., Seeman, N.C., J. Am. Chem. Soc. 120, 9779 (1998).CrossRef
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C., Nature 394, 539 (1998).CrossRef
LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C., J. Am. Chem. Soc. 122, 1848 (2000).CrossRef
Mao, C., Sun, W., Seeman, N.C., J. Am. Chem. Soc. 121, 5437 (1999).CrossRef
Alivisatos, A.P., Johnsson, K.P., Peng, X.G., Wilson, T.E., Loweth, C.J., Bruchez, M.P., Schultz, P.G., Nature 382, 609 (1996).CrossRef
Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature 382, 607 (1996).CrossRef
Nykypanchuk, D., Maye, M.M., van der Lelie, D., Gang, O., Nature 451, 549 (2008).CrossRef
Xiong, H.M., van der Lelie, D., Gang, O., J. Am. Chem. Soc. 130, 2442 (2008).CrossRef
Park, S.Y., Lytton-Jean, A.K.R., Lee, B., Weigand, S., Schatz, G.C., Mirkin, C.A., Nature 451, 553 (2008).CrossRef
Tkachenko, A.V., Phys. Rev. Lett. 89, 148303 (2002).CrossRef
Xiong, H.M., van der Lelie, D., Gang, O., Phys. Rev. Lett. 102, 015504 (2009).CrossRef
Macfarlane, R.J., Jones, M.R., Senesi, A.J., Young, K.L., Lee, B., Wu, J.S., Mirkin, C.A., Angew. Chem. Int. Ed. Engl. 49, 4589 (2010).CrossRef
Srinivasan, B., Vo, T., Zhang, Y.G., Gang, O., Kumar, S., Venkatasubramanian, V., Proc. Natl Acad Sci U.S.A. 110, 18431 (2013).CrossRef
Vo, T., Venkatasubramanian, V., Kumar, S., Srinivasan, B., Pal, S., Zhang, Y.G., Gang, O., Proc. Natl. Acad. Sci. U.S.A. 112, 4982 (2015).CrossRef
Sun, D.Z., Gang, O., J. Am. Chem. Soc. 133, 5252 (2011).CrossRef
Zhang, Y.G., Lu, F., Yager, K.G., van der Lelie, D., Gang, O., Nat. Nanotechnol. 8, 865 (2013).CrossRef
Zhang, C., Macfarlane, R.J., Young, K.L., Choi, C.H.J., Hao, L.L., Auyeung, E., Liu, G.L., Zhou, X.Z., Mirkin, C.A., Nat. Mater. 12, 741 (2013).CrossRef
Diao, Y., Zhou, Y., Kurosawa, T., Shaw, L., Wang, C., Park, S., Guo, Y., Reinspach, J.A., Gu, K., Gu, X., Tee, B.C.K., Pang, C., Yan, H., Zhao, D., Toney, M.F., Mannsfeld, S.C.B., Bao, Z., Nat. Commun. 6, 7955 (2015).CrossRef
Heuer-Jungemann, A., Kirkwood, R., El-Sagheer, A.H., Brown, T., Kanaras, A.G., Nanoscale 5, 7209 (2013).CrossRef
Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C., J. Am. Chem. Soc. 126, 2324 (2004).CrossRef
Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C., Nature 461, 74 (2009).CrossRef
Paukstelis, P.J., Nowakowski, J., Birktoft, J.J., Seeman, N.C., Chem. Biol. 11, 1119 (2004).CrossRef
Simmons, C.R., Zhang, F., Birktoft, J.J., Qi, X., Han, D., Liu, Y., Sha, R., Abdallah, H.O., Hernandez, C., Ohayon, Y.P., Seeman, N.C., Yan, H., J. Am. Chem. Soc. 138, 10047 (2016).CrossRef
Nguyen, N., Birktoft, J.J., Sha, R., Wang, T., Zheng, J., Constantinou, P.E., Ginell, S.L., Chen, Y., Mao, C., Seeman, N.C., J. Mol. Recognit. 25, 494 (2012).CrossRef
Wang, T., Sha, R., Birktoft, J., Zheng, J., Mao, C., Seeman, N.C., J. Am. Chem. Soc. 132, 15471 (2010).CrossRef
Hao, Y., Kristiansen, M., Sha, R., Birktoft, J.J., Hernandez, C., Mao, C., Seeman, N.C., Nat. Chem. 9, 824 (2017).CrossRef
Wang, X., Sha, R., Kristiansen, M., Hernandez, C., Hao, Y., Mao, C., Canary, J.W., Seeman, N.C., Angew. Chem. Int. Ed. Engl. 56, 6445 (2017).CrossRef
Rusling, D.A., Chandrasekaran, A.R., Ohayon, Y.P., Brown, T., Fox, K.R., Sha, R., Mao, C., Seeman, N.C., Angew. Chem. Int. Ed. Engl. 53, 3979 (2014).CrossRef
Jones, M.R., Macfarlane, R.J., Lee, B., Zhang, J., Young, K.L., Senesi, A.J., Mirkin, C.A., Nat. Mater. 9, 913 (2010).CrossRef
Vial, S., Nykypanchuk, D., Yager, K.G., Tkachenko, A.V., Gang, O., ACS Nano 7, 5437 (2013).CrossRef
Lu, F., Yager, K.G., Zhang, Y., Xin, H., Gang, O., Nat. Commun. 6, 6912 (2015).CrossRef
Tian, Y., Wang, T., Liu, W.Y., Xin, H.L., Li, H.L., Ke, Y.G., Shih, W.M., Gang, O., Nat. Nanotechnol. 10, 637 (2015).CrossRef
Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V., Gang, O., Science 351, 582 (2016).CrossRef
Tian, Y., Zhang, Y., Wang, T., Xin, H.L., Li, H., Gang, O., Nat. Mater. 15, 654 (2016).CrossRef
Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M., Nature 459, 414 (2009).CrossRef
Licata, N.A., Tkachenko, A.V., Phys. Rev. E 79, 011404 (2009).CrossRef
Li, Y.L., Liu, Z.Y., Yu, G.M., Jiang, W., Mao, C.D., J. Am. Chem. Soc. 137, 4320 (2015).CrossRef
Liu, W.Y., Halverson, J., Tian, Y., Tkachenko, A.V., Gang, O., Nat. Chem. 8, 867 (2016).CrossRef
Pal, S., Zhang, Y., Kumar, S.K., Gang, O., J. Am. Chem. Soc. 137, 4030 (2015).CrossRef
Xiong, H., Sfeir, M.Y., Gang, O., Nano Lett. 10, 4456 (2010).CrossRef
Tan, S.J., Kahn, J.S., Derrien, T.L., Campolongo, M.J., Zhao, M., Angew. Chem. Int. Ed. Engl. 53, 1316 (2014).CrossRef
Srivastava, S., Nykypanchuk, D., Fukuto, M., Gang, O., ACS Nano 8, 9857 (2014).CrossRef
Maye, M.M., Kumara, M.T., Nykypanchuk, D., Sherman, W.B., Gang, O., Nat. Nanotechnol. 5, 116 (2010).CrossRef
Zhang, Y., Srinivasan, B., Vo, T., Pal, S., Kumar, S., Gang, O., Nat. Mater. 14, 840 (2015).CrossRef
Kim, Y., Macfarlane, R.J., Jones, M.R., Mirkin, C.A., Science 351, 579 (2016).CrossRef
Seeman, N., Nature 421, 427 (2003).CrossRef