Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.304 Render date: 2021-03-04T17:00:33.226Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Synthesis and applications of conducting polymer nanofibers

Published online by Cambridge University Press:  10 October 2016

Richard B. Kaner
Affiliation:
Department of Chemistry and Biochemistry, Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, USA; kaner@chem.ucla.edu.
Corresponding
E-mail address:
Get access

Abstract

Conducting polymers are difficult to process, since unlike conventional polymers, they generally do not dissolve in common solvents or melt. By synthesizing nanostructured forms of the conjugated polymer polyaniline, simple methods for making conducting polymer inks become possible. By using either interfacial polymerization or a rapid-mixing technique, nanostructured polyaniline has been synthesized in a readily scalable process. Polyaniline nanofibers make excellent sensors for acids and bases. When decorated with metal nanoparticles, they can be used for molecular memory devices and catalysis. Using a flash from a camera, polyaniline nanofibers can be melted and patterned to make sensors, actuators, and asymmetric membranes. Single crystals of tetraaniline can be grown that exhibit conductivities approaching that of the bulk polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Kaner, R.B., MacDiarmid, A.G., Sci. Am. 258, 106 (1988).CrossRef
Wu, C., Bein, T., Science 264, 1757 (1994).CrossRef
Martin, C.R., Acc. Chem. Res. 28, 61 (1995).CrossRef
Qiu, H., Wan, M., Macromolecules 34, 675 (2001).CrossRef
Norris, I.D., Shaker, M.M., Ko, F.K., MacDiarmid, A.G., Synth. Met. 114, 109 (2000).CrossRef
Huang, J., Virji, S., Weiller, B.H., Kaner, R.B., J. Am. Chem. Soc. 125, 314 (2003).CrossRef
Huang, J., Kaner, R.B., J. Am. Chem. Soc. 126, 851 (2004).CrossRef
Huang, J., Kaner, R.B., Chem. Commun. 4, 367 (2006).CrossRef
Huang, J., Kaner, R.B., Angew. Chem. Int. Ed. 43, 5817 (2004).CrossRef
McVerry, B.T., Temple, J.A.T., Huang, X., Marsh, K.L., Hoek, E.M.V., Kaner, R.B., Chem. Mater. 25, 3597 (2013).CrossRef
Guillen, G.R., Farrell, T.P., Kaner, R.B., Hoek, E.M.V., J. Mater. Chem. 20, 4621 (2010).CrossRef
Li, D., Kaner, R.B., Chem. Commun. 26, 3286 (2005).CrossRef
Li, D., Kaner, R.B., J. Mater. Chem. 17, 2279 (2007).CrossRef
D’Arcy, J.M., Tran, H.D., Tung, V.C., Tucker-Schwartz, A.K., Yang, Y., Kaner, R.B., Proc. Natl. Acad. Sci. U.S.A. 107, 19673 (2010).CrossRef
D’Arcy, J.M., Tran, H.D., Stieg, A.Z., Gimzewski, J., Kaner, R.B., Nanoscale 4, 3075 (2012).CrossRef
Huang, J., Virji, S., Weiller, B., Kaner, R.B., Chem. Eur. J. 10, 1314 (2004).CrossRef
Virji, S., Huang, J., Kaner, R.B., Weiller, B.H., Nano Lett. 4, 591 (2004).CrossRef
Virji, S., Weiller, B.H., Huang, J., Blair, R., Shepherd, H., Faltens, T., Haussmann, P.C., Kaner, R.B., Tolbert, S.H., J. Chem. Educ. 85, 1102 (2008).
Virji, S., Fowler, J.D., Baker, C.O., Huang, J., Kaner, R.B., Weiller, B.H., Small 1, 624 (2005).CrossRef
Virji, S., Kojima, R., Fowler, J.D., Villanueva, J.G., Kaner, R.B., Weiller, B.H., Nano Res. 2, 135 (2009).CrossRef
Virji, S., Kojima, R., Fowler, J., Kaner, R.B., Weiller, B.H., Chem. Mater. 21, 3056 (2009).CrossRef
Virji, S., Kaner, R.B., Weiller, B.H., Chem. Mater. 17, 1256 (2005).CrossRef
Tseng, R.J., Huang, J., Ouyang, J., Kaner, R.B., Yang, Y., Nano Lett. 5, 1077 (2005).CrossRef
Tseng, R.J., Baker, C.O., Shedd, B., Huang, J., Ouyang, J., Kaner, R.B., Yang, Y., Appl. Phys. Lett. 90, 053101 (2007).CrossRef
Gallon, B.J., Kojima, R.W., Kaner, R.B., Diaconescu, P.L., Angew. Chem. Int. Ed. 46, 7251 (2007).CrossRef
Huang, J., Kaner, R.B., Nat. Mater. 3, 783 (2004).CrossRef
Strong, V., Wang, Y., Patatanyan, A., Whitten, P.G., Spinks, G.M., Wallace, G.G., Kaner, R.B., Nano Lett. 11, 3128 (2011).CrossRef
Baker, C.O., Shedd, B., Innis, P.C., Whitten, P.G., Spinks, G.M., Wallace, G.G., Kaner, R.B., Adv. Mater. 20, 155 (2008).CrossRef
Li, D., Huang, J., Kaner, R.B., Acc. Chem. Res. 42, 135 (2009).CrossRef
Tran, H.D., Kaner, R.B., Chem. Commun. 37, 3915 (2006).CrossRef
Tran, H.D., Norris, I., D’Arcy, J.M., Tsang, H., Wang, Y., Mattes, B.R., Kaner, R.B., Macromolecules 41, 7405 (2008).CrossRef
Wang, Y., Tran, H.D., Kaner, R.B., J. Phys. Chem. C 113, 10346 (2009).CrossRef
Tran, H.D., Hong, W.G., D’Arcy, J.M., Kojima, R.W., Weiller, B.H., Shin, K., Kaner, R.B., Macromol. Rapid Commun. 28, 2293 (2007).CrossRef
Wang, Y., Tran, H.D., Liao, L., Duan, X., Kaner, R.B., J. Am. Chem. Soc. 132, 10365 (2010).CrossRef
Wang, Y., Liu, J., Tran, H.D., Mecklenburg, M., Guan, X.N., Stieg, A.Z., Regan, B.C., Martin, D.C., Kaner, R.B., J. Am. Chem. Soc. 134, 9251 (2012).CrossRef
Wang, Q.H., Hersam, M.C., Nat. Chem. 1, 206 (2009).CrossRef
Wang, Y., Torres, J.A., Stieg, A.Z., Jiang, S., Yeung, M.T., Rubin, Y., Chaudhuri, S., Duan, X., Kaner, R.B., ACS Nano 9, 9486 (2015).CrossRef
D’Arcy, J.M., El-Kady, M.F., Khine, P.P., Zhang, L., Lee, S.H., Davis, N.R., Liu, D.S., Yeung, M.T., Kim, S.Y., Turner, C.L., Lech, A.T., Hammond, P.T., Kaner, R.B., ACS Nano 8, 1500 (2014).CrossRef

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 34
Total number of PDF views: 282 *
View data table for this chart

* Views captured on Cambridge Core between 10th October 2016 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and applications of conducting polymer nanofibers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis and applications of conducting polymer nanofibers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis and applications of conducting polymer nanofibers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *