Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.28 Render date: 2021-03-02T14:28:18.726Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Surface functionalization and biological applications of CVD diamond

Published online by Cambridge University Press:  12 June 2014

Sabine Szunerits
Affiliation:
University Lille 1, Interdisciplinary Research Institute, Parc de la Haute Borne, France; sabine.szunerits@iri.univ-lille1.fr
Christoph E. Nebel
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany; christoph.nebel@iaf.fraunhofer.de
Robert J. Hamers
Affiliation:
Department of Chemistry, University of Wisconsin-Madison, USA; rjhamers@wisc.edu
Get access

Abstract

Recent advances in biotechnology have fueled a need for well-defined, highly stable interfaces modified with a variety of biomolecules. Diamond is a particularly attractive material for biological applications because of its chemical stability and good biocompatibility. Since diamond can be made conductive by doping, it is also of interest for a variety of electrically based biological sensing applications that achieve improved performance through selective biological modification. Recent developments of diamond growth by chemical vapor deposition have enabled the preparation of large-area synthetic diamond films on different substrates at a reasonable cost. An as-grown diamond film is terminated by hydrogen on the surface and shows hydrophobic wetting characteristics, besides chemical inertness. This has created problems for attachment of many biomolecules that are inherently hydrophilic. The challenge to make diamond useful for in vivo applications thus lies in covalently linking biomolecules to such surfaces. Several breakthroughs have been accomplished over the last decade, and attaching biomolecules to diamond in a controlled and reproducible way can nowadays be achieved in several different manners and is the focus of this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Nebel, C.E., Semicond. Sci. Technol. 18, S1 (2003).CrossRef
Narayan, R., Diamond-Based Materials for Biomedical Applications (Woodhead Publishing, Cambridge, UK, 2013).CrossRefGoogle Scholar
Boukherroub, R., Curr. Opin. Solid State Mater. Sci. 9, 66 (2005).
Szunerits, S., Boukherroub, R., Diamond-Based Materials for Biomedical Applications, Narayan, R., Ed. (Woodhead Publishing, Cambridge, UK, 2013), pp. 2547.CrossRefGoogle Scholar
Thoms, B.D., Owens, M.S., Butler, J.E., Spiro, C., App. Phys. Lett. 65, 2957 (1994).CrossRef
Shin, D., Rezek, B., Tokuda, N., Takeuchi, D., Watanabe, H., Nakamura, T., Yamamoto, T., Nebel, C.E., Phys. Status Solidi A 203, 3245 (2006).CrossRef
Kuo, T.-C., McCreery, R.L., Swain, G.M., Electrochem. Solid-State Lett. 2, 288 (1999).CrossRef
Uetsuka, H., Shin, D., Tokuda, N., Saeki, K., Nebel, C.E., Langmuir 23, 3466 (2007).CrossRef
Zhong, Y.L., Ng, W., Yang, J.-X., Loh, K.P., J. Am. Chem. Soc. 131, 18293 (2009).CrossRef
Andrieux, C.P., Pinson, J., J. Am. Chem. Soc. 125, 14801 (2003).CrossRef
Yang, W., Baker, S.E., Butler, J.E., Lee, C.-S., Russell, J.N., Shang, L., Sun, B., Hamers, R.J., Chem. Mater. 17, 938 (2005).CrossRef
Kulisch, W., Popov, C., Gilliland, D., Ceccone, G., Reithmaier, J.P., Rossi, F., Surf. Coat. Technol. 206, 667 (2011).CrossRef
Wenmackers, S., Vermeeren, V., vandeVen, M., Ameloot, M., Bijnens, N., Haenen, K., Michiels, L., Wagner, P., Phys. Status Solidi A 206, 391 (2009).CrossRef
Pinson, J., Podvorica, F., Chem. Soc. Rev. 34, 429 (2005).CrossRef
Lud, S.Q., Steenackers, M., Jordan, R., Bruno, P., Gruen, D.M., Feulner, P., Garrido, J.A., Stutzmann, M., J. Am. Chem. Soc. 128, 16884 (2006).CrossRef
Shul, G., Actis, P., Marcus, B., Opallo, M., Boukherroub, R., Szunerits, S., Diam. Relat. Mater. 17, 1394 (2007).CrossRef
Zhong, Y.L., Loh, K.P., Midya, A., Chen, Z.-K., Chem. Mater. 20, 3137 (2008).CrossRef
Takahashi, K., Tanga, M., Takai, O., Okamura, H., Diam. Relat. Mater. 12, 572 (2003).CrossRef
Miller, J.B., Brown, D.W., Diam. Relat. Mater. 4, 435 (1995).CrossRef
Miller, J.B., Brown, D.W., Langmuir 12, 5809 (1996).CrossRef
Ando, T., Nishitani-Gamo, M., Rawles, R.E., Yamamoto, K., Kamo, M., Sato, Y., Diam. Relat. Mater. 5, 1136 (1996).CrossRef
Yang, W., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J.E., Gruen, D.M., Knickerbocker, T.L., Lasseter, T.L., Russell, J.N., Smith, L.M., Harmers, R.J., Nat. Mater. 1, 253 (2002).CrossRef
Zhong, Y.-L., Chong, K.F., May, P.W., Chen, Z.-K., Loh, K.P., Langmuir 23, 5824 (2007).CrossRef
Rezek, B., Shin, D., Nakamura, Y., Nebel, C.E., J. Am. Chem. Soc. 128, 3884 (2006).CrossRef
Knickerbocker, T., Strother, T., Schwartz, M.P., Russell, J.N., Butler, J., Smith, L.M., Hamers, R.J., Langmuir 19, 1938 (2003).CrossRef
Lasseter, T.L., Clare, B.H., Abbott, N.L., Hamers, R.J., J. Am. Chem. Soc. 126, 10220 (2004).CrossRef
Stavis, C., Clare, T.L., Butler, J.E., Radadia, A.D., Carr, R., Zeng, H., King, W.P., Carlisle, J.A., Aksimentiev, A., Bashir, R., Hamers, R.J., Proc. Natl. Acad. Sci. U.S.A. 108, 983 (2011).CrossRef
Härtl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feulber, P., Kromka, A., Steinmuller, D., Stutzmann, M., Nat. Mater. 3, 736 (2004).CrossRef
Zhang, G.-J., Song, K.-S., Nakamura, Y., Ueno, T., Funatsu, T., Ohdomari, I., Kawarada, H., Langmuir 22, 3728 (2006).CrossRef
Szunerits, S., Jama, C., Coffinier, Y., Marcus, B., Delabouglise, D., Boukherroub, R., Electrochem. Commun. 8, 1185 (2006).CrossRef
Coffinier, Y., Szunerits, S., Jama, C., Desmet, R., Melnyk, O., Marcus, B., Gengembre, L., Payen, E., Delabouglise, D., Boukherroub, R., Langmuir 23, 4494 (2007).CrossRef
Wang, Q., Kromka, A., Houdkova, J., Babchenko, O., Rezek, B., Li, M., Boukherroub, R., Szunerits, S., Langmuir 28, 587 (2012).CrossRefPubMed
Szunerits, S., Boukherroub, R., J. Solid-State Electrochem. 12, 1205 (2008).CrossRef
Klausner, F., Ghodbane, S., Boukherroub, R., Szunerits, S., Steinmueller-Nethel, D., Bertel, E., Memmel, N., Diam. Relat. Mater. 19, 474 (2009).CrossRef
Ghodbane, S., Haensel, T., Coffinier, Y., Szunerits, S., Steinmüller-Nethl, D., Boukherroub, R., Imad-Uddin Ahmed, S., Schaefer, J.A., Langmuir 26, 18798 (2010).CrossRef
Wang, M., Simon, N., Decorse-Pascanut, C., Bouttemy, M., Etcheberry, A., Li, M., Boukherroub, R., Szunerits, S., Electrochim. Acta 54, 5818 (2009).CrossRef
Boukherroub, R., Wallart, X., Szunerits, S., Marcus, B., Bouvier, P., Mermoux, M., Electrochem. Commun. 7, 937 (2005).CrossRef
Wang, M., Simon, N., Charrier, G., Bouttemy, M., Etcheberry, A., Li, M., Boukherroub, R., Szunerits, S., Electrochem. Commun. 12, 351 (2010).CrossRef
Coffinier, Y., Szunerits, S., Marcus, B., Desmet, R., Melnyk, O., Gengembre, L., Payen, E., Delabouglise, D., Boukherroub, R., Diam. Relat. Mater. 16, 892 (2007).CrossRef
Coffinier, Y., Galopin, E., Szunerits, S., Boukherroub, R., J. Mater. Chem. 20, 10671 (2010).CrossRef
Szunerits, S., Shirahata, N., Actis, P., Nakanishi, J., Boukherroub, R., Chem. Commun. 27, 2793 (2007).CrossRef
Marcon, L., Wang, M., Coffinier, Y., Le Normand, F., Melnyk, O., Boukherroub, R., Szunerits, S., Langmuir 26, 1075 (2010).CrossRef
Szunerits, S., Niedziółka-Jönsson, J., Boukherroub, R., Woisel, P., Baumann, J.-S., Siriwardena, A., Anal. Chem. 82, 8203 (2010).CrossRef
Hoyle, C.E., Lowe, A.B., Bowman, C.N., Chem. Soc. Rev. 39, 1355 (2010).CrossRef
Lowe, A.B., Hoyle, C.E., Bowman, C.N., J. Mater. Chem. 20, 4745 (2010).CrossRef
Caipa Campos, M.A., Paulusse, J.M.J., Zuilhof, H., Chem. Commun. 46, 5512 (2010).CrossRef
Hensarling, R.M., Doughty, V.A., Chan, J.W., Patton, D.L., J. Am. Chem. Soc. 131, 14673 (2009).CrossRef
Mezian, D., Barras, A., Kromka, A., Houdkova, J., Boukherroub, R., Szunerits, S., Anal. Chem. 84, 194 (2012).CrossRef
Hoffmann, R., Kriele, A., Obloh, H., Tokuda, N., Smirnov, W., Yang, N., Nebel, C.E., Biomaterials 32, 7325 (2011).CrossRef
Yang, N., Uetsuka, H., Nebel, C.E., Adv. Funct. Mater. 19, 887 (2009).CrossRef
Szunerits, S., Coffinier, Y., Galopin, E., Brenner, J., Boukherroub, R., Electrochem. Commun. 12, 438 (2010).CrossRef
Barras, A., Martin, F.A., Bande, O., Baumann, J.S., Ghigo, J.-M., Boukherroub, R., Beloin, C., Siriwardena, A., Szunerits, S., Nanoscale 5, 2307 (2013).CrossRef
Barras, A., Szunerits, S., Marcon, L., Monfilliette-Dupont, N., Boukherroub, R., Langmuir 26, 13168 (2010).CrossRef
Nebel, C.E., Yang, N., Uetsuka, H., Osawa, E., Tokuda, N., Williams, O., Diam. Relat. Mater. 18, 910 (2009).CrossRef
Subramanian, P., Mortorina, A., Yeap, W.S., Haenen, K., Coffinier, Y., Zaitsev, V., Niedziolka-Jonsson, J., Boukherroub, R., Szunerits, S., Analyst 139 (7), 1726 (2014).CrossRef
Yang, N., Smirnov, W., Nebel, C.E., Electrochem. Commun. 27, 89 (2013).CrossRef
Krueger, A., J. Mater. Chem. 21, 12571 (2011).CrossRef
Khanal, M.M., Vausellin, T.T., Barras, A.A., Bande, O.O., Turcheniuk, T.K., Benazza, M.M., Zaitsev, V., Teodurescu, C.M., Boukherroub, R., Siriwardena, A., Dubuisson, J., Szunerits, S., ACS Appl. Mater. Interfaces 5, 12488 (2013).CrossRef
Markovic, N.M., Adzic, R.R., Cahan, B.D., Yeager, E.B., J. Electroanal. Chem. 377, 249 (1994).CrossRef
Martin, R., Alvaro, M., Herance, J.R., Garcia, H., ACS Nano 4, 65 (2010).CrossRef
Girard, H.A., Petit, T., Perruchas, S., Gacoin, T., Gesset, C., Arnault, J.C., Bergonzo, P., Phys. Chem. Chem. Phys. 13, 11517 (2011).CrossRef
Rojas, S., Gispert, J.D., Martín, R., Abad, S., Menchón, C., Pareto, D., Víctor, V.M., Álvaro, M., García, H., Herance, J.R., ACS Nano 5, 5552 (2011).CrossRef

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 52
Total number of PDF views: 222 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface functionalization and biological applications of CVD diamond
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface functionalization and biological applications of CVD diamond
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface functionalization and biological applications of CVD diamond
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *