Skip to main content Accessibility help

Article contents

Spectroscopic characterization of actinide materials

Published online by Cambridge University Press:  31 January 2011

R. Caciuffo
Actinide Research Department, Institute for Transuranium Elements, Karlsruhe, Germany;
E. C. Buck
Pacific Northwest National Laboratory, Richland, WA 99354, USA;
D. L. Clark
Los Alamos National Laboratory, NM 87545, USA;
G. van der Laan
Diamond Light Source, UK;
Get access


Advanced spectroscopic techniques provide new and unique tools for unraveling the nature of the electronic structure of actinide materials. Inelastic neutron scattering experiments, which address temporal aspects of lattice and magnetic fluctuations, probe electromagnetic multipole interactions and the coupling between electronic and vibrational degrees of freedom. Nuclear magnetic resonance clearly demonstrates different magnetic ground states at low temperature. Photoemission spectroscopy provides information on the occupied part of the electronic density of states and has been used to investigate the momentum-resolved electronic structure and the topology of the Fermi surface in a variety of actinide compounds. Furthermore, x-ray absorption and electron energy-loss spectroscopy have been used to probe the relativistic nature, occupation number, and degree of localization of 5f electrons across the actinide series. More recently, element- and edge-specific resonant and non-resonant inelastic x-ray scattering experiments have provided the opportunity of measuring elementary electronic excitations with higher resolution than traditional absorption techniques. Here, we will discuss results from these spectroscopic techniques and what they tell us of the electronic and magnetic properties of selected actinide materials.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.


1.Moore, K.T., van der Laan, G., Rev. Mod. Phys. 81, 235 (2009).CrossRefGoogle Scholar
2.Santini, P., Carretta, S., Amoretti, G., Caciuffo, R., Magnani, N., Lander, G.H., Rev. Mod. Phys. 81, 807 (2009).CrossRefGoogle Scholar
3.Santini, P., Carretta, S., Magnani, N., Amoretti, G., Caciuffo, R., Phys. Rev. Lett. 97, 207203 (2006).CrossRefGoogle Scholar
4.Haule, K., Kotliar, G., Nat. Phys. 5, 796 (2009).CrossRefGoogle Scholar
5.Kotegawa, H., Yogi, M., Imamura, Y., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Ohsaki, S., Sugawara, H., Aoki, Y., Sato, H., Phys. Rev. Lett. 90, 027001 (2003).CrossRefGoogle Scholar
6.Cox, D.L., Zawadowski, A., Adv. Phys. 47, 599 (1998).CrossRefGoogle Scholar
7.Curro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Thompson, J.D., Sarrao, J.L., Nature (London) 434, 622 (2005).CrossRefGoogle Scholar
8.Flint, R., Dzero, M., Coleman, P., Nat. Phys. 4, 643 (2008).CrossRefGoogle Scholar
9.Aoki, D., Haga, Y., Matsuda, T.D., Tateiwa, N., Ikeda, S., Homma, Y., Sakai, H., Shiokawa, Y.-, Yamamoto, E., Nakamura, A., Settai, R., Onuki, Y., J. Phys. Soc. Jpn. 76, 063701 (2007).CrossRefGoogle Scholar
10.Pfleiderer, C., Rev. Mod. Phys. 81, 1551 (2009).CrossRefGoogle Scholar
11.Morss, L.R., Edelstein, N.M., Fuger, J., Eds., The Chemistry of the Actinide and Transactinide Elements, 3rd Ed. (Springer, NY, 2006).CrossRefGoogle Scholar
12.Lander, G.H., Fisher, E.S., Bader, S.D., Adv. Phys. 43, 1 (1994).CrossRefGoogle Scholar
13.O'Brien, J.L., Hamilton, A.R., Clark, R.G., Mielke, C.H., Smith, J.L., Cooley, J.C., Rickel, D.G., Starrett, R.P., Reilly, D.J., Lumpkin, N.E., Hanrahan, R.J. Jr, Hults, W.L., Phys. Rev. B 66, 064523 (2002).CrossRefGoogle Scholar
14.Manley, M.E., Yethiraj, M., Sinn, H., Volz, H.M., Alatas, A., Lashley, J.C., Hults, W.L., Lander, G.H., Smith, J.L., Phys. Rev. Lett. 96 125501 (2006).CrossRefGoogle Scholar
15.Bouchet, J., Phys. Rev. B 77, 024113 (2008).CrossRefGoogle Scholar
16.Chantis, A.N., Albers, R.C., Jones, M.D., van Schilfgaarde, M., Kotani, T., Phys. Rev. B 78, 081101(R) (2008).CrossRefGoogle Scholar
17.Iwan, M., Koch, E.E., Himpsel, F.-J., Phys. Rev. B 24, 613 (1981).CrossRefGoogle Scholar
18.Opeil, C.P., Schulze, R.K., Volz, H.M., Lashley, J.C., Manley, M.E., Hults, W.L., Hanrahan, R.J. Jr, Smith, J.L., Mihaila, B., Blagoev, K.B., Albers, R.C., Little-wood, P.B., Phys. Rev. B 75, 045120 (2007).CrossRefGoogle Scholar
19.Kotani, T., van Schilfgaarde, M., Faleev, S.V., Phys. Rev. B 76, 165106 (2007).CrossRefGoogle Scholar
20.Lashley, J.C., Lawson, A., McQueeney, R.J., Lander, G.H., Phys. Rev. B 72, 054416 (2005);CrossRefGoogle Scholar
van der Laan, G., Moore, K.T., Magnetic Structure of Actinide Metals (Springer Proceedings in Physics, Springer Verlag, Berlin, Heidelberg, 2010), vol. 133, p. 313.Google Scholar
21.Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A., Rev. Mod. Phys. 78, 865 (2006).CrossRefGoogle Scholar
22.Dai, X., Savrasov, S.Y., Kotliar, G., Migliori, A., Ledbetter, H., Abrahams, E., Science 300, 953 (2003).CrossRefGoogle Scholar
23.Wong, J., Krisch, M., Farber, D.L., Occelli, F., Schwartz, A.J., Chiang, T.-C., Wall, M., Boro, C., Xu, R., Science 301, 1078 (2003).CrossRefGoogle Scholar
24.Gouder, T., Eloirdi, R., Rebizant, J., Boulet, P., Huber, F., Phys. Rev. B 71, 165101 (2005).CrossRefGoogle Scholar
25.Terry, J., Schulze, R.K., Farr, J.D., Zocco, T., Heinzelman, K., Rotenberg, E., Shuh, D.K., van der Laan, G., Arena, D.A., Tobin, J.G., Surf. Sci. 499, L141 (2002).CrossRefGoogle Scholar
26.Gouder, T., Havela, L., Wastin, F., Rebizant, J., Europhys. Lett. 55, 705 (2001).CrossRefGoogle Scholar
27.Havela, L., Gouder, T., Wastin, F., Rebizant, J., Phys. Rev. B 65, 235118 (2002).CrossRefGoogle Scholar
28.Shick, A.B., Kolorenc, J., Havela, L., Drchal, V., Gouder, T., Europhys. Lett. 77, 17003 (2007).CrossRefGoogle Scholar
29.Shim, J.H., Haule, K., Kotliar, G., Nature (London) 446, 513 (2007).CrossRefGoogle Scholar
30.McCall, S.K., Fluss, M.J., Chung, B.W., McElfresh, M.W., Jackson, D.D., Chapline, G.F., Proc. Natl. Acad. Sci. U.S.A. 103, 17179 (2006).CrossRefGoogle Scholar
31.Thole, B.T., van der Laan, G., Phys. Rev. B 38, 3158 (1988); Phys. Rev. A 38, 1943 (1988).CrossRefGoogle Scholar
32.van der Laan, G., Moore, K.T., Tobin, J.G., Chung, B.W., Wall, M.A., Schwartz, A.J., Phys. Rev. Lett. 93, 097401 (2004).CrossRefGoogle Scholar
33.van der Laan, G., Thole, B.T., Phys. Rev. B 53, 14458 (1996).CrossRefGoogle Scholar
34.Moore, K.T., van der Laan, G., Haire, R.G., Wall, M.A., Schwartz, A.J., Söderlind, P., Phys. Rev. Lett. 98, 236402 (2007).CrossRefGoogle Scholar
35.Butterfield, M., Moore, K.T., van der Laan, G., Wall, M.A., Haire, R.G., Phys. Rev. B 77, 113109 (2008).CrossRefGoogle Scholar
36.Colella, M., Lumpkin, G.R., Buck, E.C., Zhang, Z., Smith, K.L.Phys. Chem. Miner. 32, 52 (2005).CrossRefGoogle Scholar
37.Buck, E.C., Douglas, M., Wittman, R.S., Micron 41, 65 (2010).CrossRefGoogle Scholar
38.Caciuffo, R., van der Laan, G., Simonelli, L., Vitova, T., Mazzoli, C., Denecke, M.A., Lander, G.H., Phys. Rev B 81, 195104 (2010).CrossRefGoogle Scholar
39.Bradley, J.A., Sen Gupta, S., Seidler, G.T., Moore, K.T., Haverkort, M.W., Sawatzky, G.A., Conradson, S.D., Clark, D.L., Kozimor, S.A., Boland, K.S., Phys. Rev B 81, 193104 (2010).CrossRefGoogle Scholar
40.Schoenes, J., Phys. Rep. 63, 301 (1980).CrossRefGoogle Scholar
41.Magnani, N., Santini, P., Amoretti, G., Caciuffo, R., Phys. Rev. B 71, 054405 (2005).CrossRefGoogle Scholar
42.Roy, L.E., Durakiewicz, T., Martin, R.L., Peralta, J.E., Scuseria, G.E., Olson, C.G., Joyce, J.J., Guziewicz, E., J. Comp. Chem. 29, 2288 (2008).CrossRefGoogle Scholar
43.Wu, Z.Y., Jollet, F., Gota, S., Thromat, N., Gautier-Soyer, M., Petit, T., J. Phys. Condens. Matter 11, 7185 (1999).CrossRefGoogle Scholar
44.Prodan, I.D., Scuseria, G.E., Martin, R.I., Phys. Rev B 76, 033101 (2007).CrossRefGoogle Scholar
45.Paixão, J.A., Detlefs, C., Longfleld, M.J., Cacluffo, R., Santini, P., Bernhoeft, N., Reblzant, J., Lander, G.H., Phys. Rev. Lett. 89, 187202 (2002).CrossRefGoogle Scholar
46.Rossat-Mlgnod, J., Lander, G.H., Burlet, P., Handbook on the Physics and Chemistry of the Actinides (North-Holland, Amsterdam, NL, 1984), vol. 1 p. 415.Google Scholar
47.Blackburn, E., Cacluffo, R., Magnani, N., Santini, P., Brown, P.J., Enderle, M., Lander, G.H., Phys. Rev. B 72, 184411 (2005).CrossRefGoogle Scholar
48.Cacluffo, R., Magnani, N., Santini, P., Carretta, S., Amoretti, G., Blackburn, E., Enderle, M., Brown, P.J., Lander, G.H., J. Magn. Magn. Mater. 310, 1698 (2007).CrossRefGoogle Scholar
49.Magnani, N., Cacluffo, R., Lander, G.H., Hless, A., Regnault, L.-P, J. Phys. Condens. Matter 22, 116002 (2010).CrossRefGoogle Scholar
50.Carra, P., Thole, B.T., Rev. Mod. Phys. 66, 1509 (1994).CrossRefGoogle Scholar
51.Di Matteo, S., Joly, Y., Natoli, C.R., Phys. Rev. B 72, 144406 (2005).CrossRefGoogle Scholar
52.Fernández-Rodríguez, J., Scagnoll, V., Mazzoli, C., Fabrlzl, F., Lovesey, S.W., Blanco, J.A., Slvla, D.S., Knight, K.S., de Bergevin, F., Paolaslnl, L., Phys. Rev. B 81, 085107 (2010).CrossRefGoogle Scholar
53.Wllklns, S.B., Cacluffo, R., Detlefs, C., Reblzant, J., Collneau, E., Wastln, F., Lander, G.H., Phys. Rev. B 73, 060406(R) (2006).Google Scholar
54.Ikushlma, K., Tsutsul, S., Haga, Y., Yasuoka, H., Walstedt, R.E., Masakl, N.M., Nakamura, A., Našu, S., Onukl, Y., Phys. Rev. B 63, 104404 (2001).CrossRefGoogle Scholar
55.Tokunaga, Y., Homma, Y., Kambe, S., Aokl, D., Šakal, H., Yamamoto, E., Nakamura, A., Shlokawa, Y., Walstedt, R.E., Yasuoka, H., Phys. Rev. Lett. 94 137209 (2005).CrossRefGoogle Scholar
56.Magnani, N., Carretta, S., Cacluffo, R., Santini, P., Amoretti, G., Hless, A., Reblzant, J., Lander, G.H., Phys. Rev. B 78, 104425 (2008).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 56 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-rm8z7 Total loading time: 0.445 Render date: 2021-01-23T20:52:30.525Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spectroscopic characterization of actinide materials
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spectroscopic characterization of actinide materials
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spectroscopic characterization of actinide materials
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *