Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-67m56 Total loading time: 0.24 Render date: 2021-10-28T06:14:11.476Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Single-crystal growth of organic semiconductors

Published online by Cambridge University Press:  14 January 2013

Hui Jiang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; Jianghui@ntu.edu.sg
Christian Kloc
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; Ckloc@ntu.edu.sg
Get access

Abstract

Organic single crystals are an established part of the emerging field of organic optoelectronics, because they provide an ideal platform for the studies of the intrinsic physical properties of organic semiconductors. As organic crystals have low melting temperatures and high vapor pressures and are soluble in numerous organic solvents, both solution and gas-phase methods can be used for crystal growth. The nature of the individual molecules and the interactions between molecules determine which growth method is preferred for particular materials. Organic semiconductors with very low decomposition or melting temperatures can be grown from solutions, whereas semiconductors with high vapor pressures can be grown using physical vapor transport methods. High-quality crystals can be obtained using both methods. Crystal growth and crystal engineering of multicomponent organic compounds are emerging fields that can provide a variety of new materials with different physical properties. The growth of large crystals from the melt by zone melting, the Bridgman, or the Czochralski methods has been used to produce stable materials used in wafer manufacturing or large scintillator detectors. In this article, single-crystal growth methods for organic semiconductors are discussed with the aim of preparing high-quality specimens for determination of the basic properties of organic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., Chem. Rev. 112, 2208 (2012).CrossRef
Ishiguro, T., Yamaji, K., Saito, G., Organic Superconductors, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, Germany, 1998).CrossRefGoogle Scholar
Klauk, H., Chem. Soc. Rev. 39, 2643 (2010).CrossRef
Kulkarni, A.P., Tonzola, C.J., Babel, A., Jenekhe, S.A., Chem. Mater. 16, 4556 (2004).CrossRef
Hoppe, H., Sariciftci, N.S., J. Mater. Res. 19, 1924 (2004).CrossRef
Horowitz, G., Hajlaoui, M.E., Adv. Mater. 12, 1046 (2000).3.0.CO;2-W>CrossRef
Kalb, W.L., Meier, F., Mattenberger, K., Batlogg, B., Phys. Rev. B 76, 184112 (2007).CrossRef
Chapman, B.D., Checco, A., Pindak, R., Siegrist, T., Kloc, C., J. Cryst. Growth 290, 479 (2006).CrossRef
Rep, D.B.A., Morpurgo, A.F., Sloof, W.G., Klapwijk, T.M., J. Appl. Phys. 93, 2082 (2003).CrossRef
de Boer, R.W.I., Gershenson, M.E., Morpurgo, A.F., Podzorov, V., Phys. Stat. Sol. (a) 201, 1302 (2004).CrossRef
Gershenson, M.E., Podzorov, V., Morpurgo, A.F., Rev. Mod. Phys. 78, 973 (2006).CrossRef
Jiang, L., Dong, H., Hu, W., J. Mater. Chem. 20, 4994 (2010).CrossRef
Li, R., Hu, W., Liu, Y., Zhu, D., Acc. Chem. Res. 43, 529 (2010).CrossRef
Yang, X., Wang, L., Wang, C., Long, W., Shuai, Z., Chem. Mater. 20, 3205 (2008).CrossRef
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).CrossRef
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).CrossRef
Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., Podzorov, V., Nat. Mater. 9, 938 (2010).CrossRef
Jiang, H., Yang, X., Cui, Z., Liu, Y., Li, H., Hu, W., Appl. Phys. Lett. 94, 123308 (2009).CrossRef
Hannewald, K., Bobbert, P.A., Phys. Rev. B 69, 075212 (2004).CrossRef
Ortmann, F., Bechstedt, F., Hannewald, K., Phys. Status Solidi (b) 248, 511 (2011).CrossRef
Jiang, L., Hu, W., Wei, Z., Xu, W., Meng, H., Adv. Mater. 21, 3649 (2009).CrossRefPubMed
Tang, Q., Tong, Y., Hu, W., Wan, Q., Bjørnholm, T., Adv. Mater. 21, 4234 (2009).CrossRef
Jiang, H., Zhao, H., Zhang, K.K., Chen, X., Kloc, C., Hu, W., Adv. Mater. 23, 5075 (2011).CrossRef
Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., Bao, Z., Nature 444, 913 (2006).CrossRef
Yamao, T., Miki, T., Akagami, H., Nishimoto, Y., Ota, S., Hotta, S., Chem. Mater. 19, 3748 (2007).CrossRef
Jiang, L., Fu, Y., Li, H., Hu, W., J. Am. Chem. Soc. 130, 3937 (2008).CrossRef
Jiang, L., Dong, H., Meng, Q., Li, H., He, M., Wei, Z., He, Y., Hu, W., Adv. Mater. 23, 2059 (2011).CrossRef
Jiang, H., Yang, X., Wang, E., Fu, Y., Liu, Y., Li, H., Cui, Z., Liu, Y., Hu, W., Synth. Met. 161, 136 (2011).CrossRef
Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X., Rovira, C., J. Am. Chem. Soc. 126, 984 (2004).CrossRef
Jiang, H., Yang, X., Cui, Z., Liu, Y., Li, H., Hu, W., Liu, Y., Zhu, D., Appl. Phys. Lett. 91, 123505 (2007).CrossRef
Pfattner, R., Mas-Torrent, M., Bilotti, I., Brillante, A., Milita, S., Liscio, F., Biscarini, F., Marszalek, T., Ulanski, J., Nosal, A., Gazicki-Lipman, M., Leufgen, M., Schmidt, G., Molenkamp, L.W., Laukhin, V., Veciana, J., Rovira, C., Adv. Mater. 22, 4198 (2010).CrossRef
Jiang, H., Zhang, K.K., Ye, Y., Wei, F., Hu, P., Guo, J., Liang, C., Chen, X., Zhao, Y., McNeil, L.E., Hu, W., Kloc, C., Small 8 (2012); doi 10.1002/smll.201202390.CrossRefPubMed
Kim, D.H., Han, J.T., Park, Y.D., Jang, Y., Cho, J.H., Hwang, M., Cho, K., Adv. Mater. 18, 719 (2006).CrossRef
Matsukawa, T., Yoshimura, M., Sasai, K., Uchiyama, M., Yamagishi, M., Tominari, Y., Takahashi, Y., Takeya, J., Kitaoka, Y., Mori, Y., Sasaki, T., J. Cryst. Growth 312, 310 (2010).CrossRef
Johannsen, I., Groth-Andersen, L., Nielsen, K.F., J. Cryst. Growth 51, 627 (1981).CrossRef
Kim, D.H., Lee, D.Y., Lee, H.S., Lee, W.H., Kim, Y.H., Han, J.I., Cho, K., Adv. Mater. 19, 678 (2007).CrossRef
Miyahara, T., Shimizu, M., J. Cryst. Growth 226, 130 (2001).CrossRef
Field, C.N., Hamley, P.A., Webster, J.M., Gregory, D.H., Titman, J.J., Poliakoff, M., J. Am. Chem. Soc. 122, 2480 (2000).CrossRef
Piper, W.W., Polich, S.J., Appl. Phys. Lett. 32, 1278 (1961).
Kloc, C., Simpkins, P.G., Siegrist, T., Laudise, R.A., J. Cryst. Growth 182, 416 (1997).CrossRef
Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T., J. Cryst. Growth 187, 449 (1998).CrossRef
Käfer, D., Witte, G., Phys. Chem. Chem. Phys. 7, 2850 (2005).CrossRef
Park, S.-W., Hwang, J.M., Choi, J.-M., Hwang, D.K., Oh, M.S., Kim, J.H., Im, S., Appl. Phys. Lett. 90, 153512 (2007).CrossRef
Podzorov, V., Sysoev, S.E., Loginova, E., Pudalov, V.M., Gershenson, M.E., Appl. Phys. Lett. 83, 3504 (2003).CrossRef
Jiang, H., Tan, K.J., Zhang, K.K., Chen, X., Kloc, C., J. Mater. Chem. 21, 4771 (2011).CrossRef
Tang, Q., Jiang, L., Tong, Y., Li, H., Liu, Y., Wang, Z., Hu, W., Liu, Y., Zhu, D., Adv. Mater. 20, 2947 (2008).CrossRef
Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Springer Handbook of Crystal Growth, 1st ed. (Springer-Verlag, Berlin Heidelberg, Germany, 2010).CrossRefGoogle Scholar
Feigelson, R.S., Route, R.K., Kao, T.-M., J. Cryst. Growth 72, 585 (1985).CrossRef
Selvakumar, S., Sivaji, K., Arulchakkaravarthi, A., Balamurugan, N., Sankar, S., Ramasamy, P., J. Cryst. Growth 282, 370 (2005).CrossRef
Probst, K.H., Karl, N., Phys. Status Solidi (a) 27, 499 (1975).CrossRef
McArdle, B.J., Sherwood, J.N., Damask, A.C., J. Cryst. Growth 22, 193 (1974).CrossRef
Inokuchi, H., Bull. Chem. Soc. Jpn. 29, 131 (1956).CrossRef
Niemax, J., Pflaum, J., Appl. Phys. Lett. 87, 241921 (2005).CrossRef
Arulchakkaravarthi, A., Santhanaraghavan, P., Ramasamy, P., J. Cryst. Growth 224, 89 (2001).CrossRef
Bridgman, P.W., Proc. Am. Acad. Arts Sci. 60, 305 (1925).CrossRef
Brissaud, M., Dolin, C., Leduigou, J., McArdle, B.S., Sherwood, J.N., J. Cryst. Growth 38, 134 (1977).CrossRef
Tripathi, A.K., Heinrich, M., Siegrist, T., Pflaum, J., Adv. Mater. 19, 2097 (2007).CrossRef
Karl, N., Crystals Growth, Properties, and Applications, 1st ed. (Springer-Verlag, Berlin, Heidelberg, Germany, 1980).Google Scholar
Hong, I.H., Tan, K.J., Toh, M., Jiang, H., Zhang, K., Kloc, C., J. Cryst. Growth (2012); doi 10.1016/j.jcrysgro.2012.10.002.
Bleay, J., Hooper, R.M., Narang, R.S., Sherwood, J.N., J. Cryst. Growth 43, 589 (1978).CrossRef
Arivanandhan, M., Sankaranarayanan, K., Sanjeeviraja, C., Arulchakkaravarthi, A., Ramasamy, P., J. Cryst. Growth 281, 596 (2005).CrossRef
Tickle, I.J., Prout, C.K., J. Chem. Soc. 6, 720 (1973).
Truong, K.D., Bandrauk, A.D., Chem. Phys. Lett. 44, 232 (1976).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Single-crystal growth of organic semiconductors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Single-crystal growth of organic semiconductors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Single-crystal growth of organic semiconductors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *