Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-02T21:37:57.688Z Has data issue: false hasContentIssue false

SiC-Matrix Composite Materials for Advanced Jet Engines

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

SiC-matrix composites consist of ceramic fibers embedded in a silicon carbide matrix produced by gas-, liquid-, or solid-phase routes, yielding materials that differ in matrix crystallinity, residual porosity, and thermal properties. These composites can be highly engineered in terms of the nature of the reinforcement, the interphase used to control the fiber-matrix bonding, the matrix, and the seal coating used. SiC-matrix composites are refractory ceramics displaying outstanding mechanical and thermal properties at high temperature. Their durability in oxidizing atmospheres and under load exceeds 1000 h at temperatures of up to ∼1200°C. They have been used to fabricate different components of the hot zone of jet engines with significant weight savings and an increase in performance. This article reviews the state of the art in the processing, materials design, and properties of these composites as well as their applications in advanced jet engines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Naslain, R., in Ceramic Matrix Composites, Chapter 5, edited by Warren, R. (Blackie, Glasgow, 1992) p. 199.Google Scholar
2.Luthra, K.L. and Corman, G.S., in High Temperature Ceramic Matrix Composites, edited by Krenkel, W., Naslain, R., and Schneider, H. (Wiley-VCH, Weinheim, 2001) p. 744.CrossRefGoogle Scholar
3.Kohyama, A. and Katoh, Y., Ceram. Trans. 144 (2002) p. 3.Google Scholar
4.Naslain, R., Composites, Part A 29A (1998) p. 1145.CrossRefGoogle Scholar
5.Kerans, R.J., Hay, R.S., Parthasarathy, T.A., and Cinibulk, M.K., J. Am. Ceram. Soc. 85 (11) (2002) p. 2599.CrossRefGoogle Scholar
6.Aveston, J., Cooper, G.A., and Kelly, A., in The Properties of Fibre Composites (IPC Science and Technology Press, Guildford, UK, 1971) p. 15.Google Scholar
7.Marshall, D.B. and Evans, A.G., Acta Metall. 37 (1989) p. 2567.Google Scholar
8.Spriet, P. and Habarou, G., Key Eng. Mater. 127–131 (1997) p. 1267.Google Scholar
9.Christin, F., Adv. Eng. Mater. 4 (12) (2002) p. 903.Google Scholar
10.Christin, F., in High Temperature Ceramic Matrix Composites, edited by Krenkel, W., Naslain, R., and Schneider, H. (Wiley-VCH, Weinheim, Germany, 2001) p. 731.Google Scholar
11.Beesley, C.P., Key Eng. Mater. 127–131 (1997) p. 165.Google Scholar
12.Ohnabe, H., Masaki, S., Onozuka, M., Miyahara, K., and Sasa, T., Composites, Part A 30A (1999) p. 489.Google Scholar
13.Staehler, J.M. and Zawada, L.P., J. Am. Ceram. Soc. 83 (7) (2000) p. 1727.Google Scholar
14.Nakano, K., Hiroyuki, A., and Ogawa, K., in Proc. 4th ECCM-Conf., edited by Füller, J., Grüninger, G., Schulte, K., Bunsell, A.R., and Massiah, A. (Elsevier Science, Barking, UK, 1990) p. 419.Google Scholar
15.Morscher, G.N., Bryant, D.R., and Tressler, R.E., Ceram. Eng. Sci. Proc. 18 (3) (2000) p. 525.CrossRefGoogle Scholar
16.Naslain, R., Pailler, R., Bourrat, X., Bertrand, S., Heurtevent, F., Dupel, P., and Lamouroux, F., Solid State Ionics 141–142 (2001) p. 541.Google Scholar
17.Lamouroux, F., Bertrand, S., Pailler, R., Naslain, R., and Cataldi, M., Compos. Sci. Technol. 59 (1999) p. 1073.Google Scholar
18.Brentnall, W.D., van Roode, M., Norton, P.F., Gates, S., Price, J.R., Jimenez, O., and Miriyala, N., in Ceramic Gas Turbine Design and Test Experience, Vol. 1, edited by van Roode, M., Ferber, M.K., and Richerson, D.W. (ASME Press, New York, 2002) p. 155.Google Scholar
19.Bouillon, E., Abbe, F., Goujard, S., Pestourie, E., Habarou, G., and Dambrine, B., Ceram. Eng. Sci. Proc. 21 (3) (2000) p. 459.Google Scholar
20.Droillard, C., PhD thesis, No. 913, University Bordeaux 1, June 19, 1993.Google Scholar
21.Bouillon, E., Spriet, P., Habarou, G., Arnold, T., Ojard, G., Feindel, D., Logan, C., Rogers, K., Doppes, G., Miller, R., Grabowski, Z., and Stetson, D., in Proc. of IGTI/ASME TURBO EXPO, ASME TURBO EXPO Land, Sea & Air (2003).Google Scholar