Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-jxh9h Total loading time: 0.666 Render date: 2021-04-17T02:28:25.855Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Quantitative X-Ray Diffraction From Superlattices

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The physical properties of superlattices have been the subject of considerable interest because a wide range of phenomena associated with very thin films, interfaces, and coupling effects can be studied. Recent areas of activity in metallic superlattices include antiferromagnetic coupling of ferromagnetic layers across nonmagnetic spacer layers, giant magnetoresistance, magnetic surface anisotropy, low-dimensional superconductivity, and anomalous mechanical properties. All of these phenomena are strongly affected by the chemical and physical properties of the individual layers and by the superlattice structure. Therefore, a detailed understanding of the properties of superlattices requires a nondestructive, quantitative determination of the superlattice structure.

Because superlattices are not in thermodynamic equilibrium, their structure is sensitive to preparation methods and growth conditions. A dramatic example of superlattice structural dependence on growth conditions is shown in Figure 1, for sputtered Nb/Si superlattices. Increasing the Ar pressure during sputtering decreases the kinetic energy of the deposited atoms, thereby changing their surface mobility, and thus altering growth dynamics. Figure 1 shows the low-angle x-ray diffraction and cross-sectional transmission electron microscopy (TEM) images of [Nb(35 Å)/Si(25 Å)]40, superlattices sputtered in, respectively, 3 and 15 mTorr of Ar. The TEM image of the 3 mTorr superlattice clearly shows the smooth and continuous layering across the entire cross section of the image (≈5 μm). This is characteristic of sputtered metal/semiconductor superlattices used for x-ray optics.

Type
Quantitative Analysis of Thin Films
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. For instance, see various articles in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988); Metallic Superlattices, Artificially Structured Materials, edited by T. Shinjo and T. Takada (Elsevier, Amsterdam, 1987).CrossRefGoogle Scholar
2.Parkin, S.S.P., Phys. Rev. Lett. 67 (1991) p. 3598.CrossRefGoogle Scholar
3.Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F. Nguyen, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61 (1988) p. 2472.CrossRefGoogle Scholar
4.Engel, B.N., England, C.D., Van Leeubuen, R.A., Wiedmann, M.H., and Falco, C.F., Phys. Rev. Lett. 67 (1991) p. 1910.CrossRefGoogle Scholar
5.Schuller, I.K., Guimpel, J., and Bruynseraede, Y., MRS Bulletin XV (2) (1990) p. 29.CrossRefGoogle Scholar
6.Neerinck, D., Temst, K., Baert, M., Osquiguil, E., Van Haesendonck, C., Bruynseraede, Y., Gilabert, A., and Schuller, I.K., Phys. Rev. Lett. 67 (1991) p. 2577.CrossRefGoogle Scholar
7.Schuller, I.K., Fartash, A., Fullerton, E.E., and Grimsditch, M., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992) p. 499.Google Scholar
8.Fullerton, E.E., Pearson, J., Sowers, C.H., Bader, S.D., Wu, X-Z., and Sinha, S.K., to be published.Google Scholar
9.Meyer, K., Schuller, I.K., and Falco, C.M., J. Appl. Phys. 52 (1981) p. 5803.CrossRefGoogle Scholar
10.Spiller, E., in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988) p. 271.CrossRefGoogle Scholar
11.Tang, C., Alexander, S., and Bruinsma, R., Phys. Rev. Lett. 64 (1990) p. 772.CrossRefGoogle Scholar
12.Locquet, J-P., Neerinck, D., Stockman, L., Bruynseraede, Y., and Schuller, I.K., Phys. Rev. B 39 (1989) p. 13338.CrossRefGoogle Scholar
13.Fullerton, E.E., Kelly, D.M., Guimpel, J., Schuller, I.K., and Bruynseraede, Y., Phys. Rev. Lett. 68 (1992) p. 859.CrossRefGoogle Scholar
14.Fullerton, E.E., Grimsditch, M., and Schuller, I.K., unpublished.Google Scholar
15.Underwood, J.H. and Barbee, T.W., Appl. Opt. 20 (1981) p. 3027.CrossRefGoogle Scholar
16.Vidal, B. and Vincent, P., Appl. Opt. 23 (1984) p. 1794.CrossRefGoogle Scholar
17.Sinha, S.K., Physica B 173 (1991) p. 25.CrossRefGoogle Scholar
18.Savage, D.E., Kleiner, J., Schimke, N., Phang, Y.H., Jankowski, T., Jacobs, J., Kariotis, R., and Lagally, M.G., J. Appl. Phys. 69 (1991) p. 1411.CrossRefGoogle Scholar
19.Sevenhans, W., Gijs, M., Bruynseraede, Y., Homma, H., and Schuller, I.K., Phys. Rev. B 34 (1986) p. 5955.CrossRefGoogle Scholar
20.Kortright, J.B., J. Appl. Phys. 70 (1991) p. 3620.CrossRefGoogle Scholar
21.Sanyal, M.K., Sinha, S.K., Gibaud, A., Satija, S.K., Majkrzak, C.F., and Homma, H., in Interface Dynamics and Growth, edited by, M.P. Anderson, Bruinsma, R.F., and Scoles, G. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992) p. 393.Google Scholar
22.Stearns, D.G., J. Appl. Phys. 71 (1992) p. 4286.CrossRefGoogle Scholar
23.Miceli, P.F. in Semiconductor Interfaces, Microstructures, and Devices: Properties and Applications, edited by Feng, Z.C (Adam Hilger IOP Publishing, Bristol, 1992).Google Scholar
24.Miceli, P.F., Palmstrøm, C.J., and Moyers, K.W., to be published.Google Scholar
25.Fullerton, E.E., Schuller, I.K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45 (1992) p. 9292.CrossRefGoogle Scholar
26.Schuller, I.K., Fullerton, E.E., Vanderstraeten, H., and Bruynseraede, Y., Structure/Property Relationships for Metal/Metal Interfaces, edited by Romig, A.D., Fowler, D.E., and Bristowe, P.D. (Mater. Res. Soc. Symp. Proc. 229, Pittsburgh, PA, 1991) p. 41.Google Scholar
27.Lamelas, F.J., He, H.D., and Clarke, R., Phys. Rev. B 43 (1991) p. 12296.CrossRefGoogle Scholar
28.Gladyszewski, G. and Mikolajczak, P., Appl. Phys. A 48 (1989) p. 521.CrossRefGoogle Scholar
29.Rietveld, H.M., J. Appl. Cryst. 2 (1969) p. 65.CrossRefGoogle Scholar
30.McWhan, D.B., in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988).Google Scholar
31.Schuller, I.K., Phys. Rev. Lett. 44 (1980) p. 1597.CrossRefGoogle Scholar
32.Prinz, G.A., J. Magn. Magn. Mater. 100 (1991) p. 469.CrossRefGoogle Scholar
33.Jonker, B.T., Krebs, J.J., and Prinz, G.A., Phys. Rev. B 39 (1989) p. 1399.CrossRefGoogle Scholar
34.Idzerda, Y.U., Jonker, B.T., Elam, W.T., and Prinz, G.A., J. Appl. Phys. 67 (1989) p. 5385.CrossRefGoogle Scholar
35.Egelhoff, W.F. Jr., Jacob, I., Rudd, J.M., Cochran, J.F., and Heinrich, B., J. Vac. Sci. Technol. A 8 (1990) p. 1582.CrossRefGoogle Scholar
36.Matijasevic, V. and Beasley, M.R., in Metallic Superlattices, Artificially Structured Materials, edited by Shinjo, T. and Takada, T. (Elsevier, Amsterdam, 1987) p. 187.Google Scholar
37.Lowndes, D.H., Norton, D.P., and Budai, J.D., Phys. Rev. Lett. 65 (1990) p. 1160.CrossRefGoogle Scholar
38.Triscone, J-M., Fischer, Ø., Brunner, O., Antognazza, L., Kent, A.D., and Karkut, M.G., Phys. Rev. Lett. 64 (1990) p. 804.CrossRefGoogle Scholar
39.Pennycook, S.J., Chisholm, M.F, Jenson, D.E., Norton, D.P., Lowndes, D.H., Feenstra, R., Kerchner, H.R., and Thomson, J.O., Phys. Rev. Lett. 67 (1991) p. 765.CrossRefGoogle Scholar
40.Fullerton, E.E., Guimpel, J., Nakamura, O., and Schuller, I.K., Phys. Rev. Lett., in press.Google Scholar
41. For an early report see, for instance, Beno, M.A., Soderholm, L., Capone, D.W. II, Hinks, D.G., Jorgensen, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Grace, J.D., Appl. Phys. Lett. 51 (1987) p. 57.CrossRefGoogle Scholar
42. For a review see, for instance, Schuller, I.K. and Jorgensen, J.D., MRS Bulletin XIV (2) (1989) p. 27.CrossRefGoogle Scholar
43.Bain, J.A., Chyung, L.J., Brennan, S., and Clemens, B.M., Phys. Rev. B 44 (1991) p. 1184.CrossRefGoogle Scholar
44.Fartash, A., Grimsditch, M., Fullerton, E.E., and Schuller, I.K., Phys. Rev. B, in press.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 35 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantitative X-Ray Diffraction From Superlattices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantitative X-Ray Diffraction From Superlattices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantitative X-Ray Diffraction From Superlattices
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *