Skip to main content Accessibility help
×
Home

Article contents

Phase-change memory cycling endurance

Published online by Cambridge University Press:  05 September 2019


SangBum Kim
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Republic of Korea, sangbum.kim@snu.ac.kr
Geoffrey W. Burr
Affiliation:
IBM Research–Almaden, USA, gwburr@us.ibm.com
Wanki Kim
Affiliation:
IBM T.J. Watson Research Center, USA, wkim@us.ibm.com
Sung-Wook Nam
Affiliation:
School of Medicine, Kyungpook National University, Republic of Korea, nams@knu.ac.kr

Abstract

The cycling endurance of phase-change memory is one of the last hurdles to overcome to enable its adoption in the larger market for persistent memory products. Phase-change memory cycling endurance failures, whether they are stuck-SET (caused by elemental segregation) or stuck-RESET (caused by void formation), are caused by atomic migration. Various driving forces responsible for the atomic migration have been identified, such as hole-wind force, electrostatic force, and crystallization-induced segregation. We introduce several strategies to improve cycling endurance based on an understanding of driving forces and interactions among them. Utilizing some of these endurance-improving techniques, record-high phase-change memory cycling endurance at around 1012 cycles has been recently reported using a confined phase-change memory cell with a metallic liner.


Type
Phase-Change Materials in Electronics and Photonics
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Pirovano, A., Redaelli, A., Pellizzer, F., Ottogalli, F., Tosi, M., Ielmini, D., Lacaita, A.L., Bez, R., IEEE Trans. Device Mater. Reliab. 4, 422 (2004).CrossRefGoogle Scholar
Yoon, S.-M., Choi, K.-J., Lee, N.-Y., Lee, S.-Y., Park, Y.-S., Yu, B.-G., Jpn. J. Appl. Phys. 46, L99 (2007).CrossRefGoogle Scholar
Lai, S., 2003 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2003), pp. 10.1.110.1.4.Google Scholar
Cappelletti, P., 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2015), pp. 10.1.110.1.4.CrossRefGoogle Scholar
Webb, M., Flash Memory Summit (Santa Clara, CA, 2018).Google Scholar
Wong, H.-S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., Goodson, K.E., Proc. IEEE 98, 2201 (2010).CrossRefGoogle Scholar
Chen, C., Schrott, A., Lee, M.H., Raoux, S., Shih, Y.H., Breitwisch, M.J., Baumann, F.H., Lai, E.-K., Shaw, T.M., Flaitz, P., Cheek, R., Joseph, E.A., Chen, S.H., Rajendran, B., Lung, H.-L., Lam, C.H., 2009 IEEE International Memory Workshop (IEEE, Monterey, CA, 2009), doi:10.1109/IMW.2009.5090589.Google Scholar
Sarkar, J., Gleixner, B., Appl. Phys. Lett. 91, 233506 (2007).CrossRefGoogle Scholar
Rajendran, B., Lee, M.-H., Breitwisch, M., Burr, G.W., Shih, Y.-H., Cheek, R., Schrott, A., Chen, C.-F., Lamorey, M., Joseph, E., Zhu, Y., Dasaka, R., Flaitz, P.L., Baumann, F.H., Lung, H.-L., Lam, C., 2008 Symposium on VLSI Technology (IEEE, Honolulu, 2008), pp. 9697.CrossRefGoogle Scholar
Lee, S., Jeong, J.-H., Lee, T.S., Kim, W.M., Cheong, B.-K., 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design (IEEE, Opio, France, 2008), pp. 4648.CrossRefGoogle Scholar
Lee, M.H., Cheek, R., Chen, C.F., Zhu, Y., Bruley, J., Baumann, F.H., Shih, Y.H., Lai, E.K., Breitwisch, M., Schrott, A., Raoux, S., Joseph, E.A., Cheng, H.-Y., Wu, J.Y., Lung, H.L., Lam, C., 2010 International Electron Devices Meeting (IEEE, San Francisco, 2010), pp. 28.6.128.6.4.Google Scholar
Khwa, W.S., Wu, J.Y., Su, T.H., Li, H.P., BrightSky, M., Wang, T.Y., Hsu, T.H., Du, P.Y., Kim, S., Chien, W.C., Cheng, H.Y., Cheek, R., Lai, E.K., Zhu, Y., Lee, M.H., Chang, M.F., Lung, H.L., Lam, C., 2014 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, 2014), pp. 29.8.129.8.4.CrossRefGoogle Scholar
Bae, J.S., Hwang, K.M., Park, K.H., Jeon, S.B., Choi, J., Ahn, J.H., Kim, S.S., Ahn, D.-H., Jeong, H.S., Nam, S.W., Jeong, G.T., Cho, H.K., Jang, D.H., Park, C.-G., 2012 IEEE International Reliability Physics Symposium (IRPS) (IEEE, Anaheim, CA, 2012), pp. EM.7.1EM.7.4.Google Scholar
Nam, S.-W., Kim, C., Kwon, M.-H., Lee, H.-S., Wi, J.-S., Lee, D., Lee, T.-Y., Khang, Y., Kim, K.-B., Appl. Phys. Lett. 92, 111913 (2008).CrossRefGoogle Scholar
Kim, C., Kang, D., Lee, T.-Y., Kim, K.H.P., Kang, Y.-S., Lee, J., Nam, S.-W., Kim, K.-B., Khang, Y., Appl. Phys. Lett. 94, 193504 (2009).Google Scholar
Yang, T.-Y., Park, I.-M., Kim, B.-J., Joo, Y.-C., Appl. Phys. Lett. 95, 032104 (2009).CrossRefGoogle Scholar
Park, Y.-J., Yang, T.-Y., Cho, J.-Y., Lee, S.-Y., Joo, Y.-C., Appl. Phys. Lett. 103, 073503 (2013).CrossRefGoogle Scholar
Park, Y.-J., Cho, J.-Y., Jeong, M.-W., Na, S., Joo, Y.-C., Sci. Rep. 6, 21466 (2016).CrossRefGoogle Scholar
Nam, S.-W., Chung, H.-S., Lo, Y.C., Qi, L., Li, J., Lu, Y., Johnson, A.T.C., Jung, Y., Nukala, P., Agarwal, R., Science 336, 1561 (2012).CrossRefGoogle Scholar
Do, K., Lee, D., Ko, D.-H., Sohn, H., Cho, M.-H., Electrochem. Solid-State Lett. 13, H284 (2010).CrossRefGoogle Scholar
Debunne, A., Virwani, K., Padilla, A., Burr, G.W., Kellock, A.J., Deline, V.R., Shelby, R.M., Jackson, B., J. Electrochem. Soc. 158, H965 (2011).CrossRefGoogle Scholar
Yeoh, P., Ma, Y., Cullen, D.A., Bain, J.A., Skowronski, M., Appl. Phys. Lett. 114, 163507 (2019).CrossRefGoogle Scholar
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M., J. Appl. Phys. 69, 2849 (1991).CrossRefGoogle Scholar
Coombs, J.H., Jongenelis, A.P.J.M., van Es-Spiekman, W., Jacobs, B.A.J., J. Appl. Phys. 78, 4918 (1995).CrossRefGoogle Scholar
Raoux, S., Cheng, H.-Y., Caldwell, M.A., Wong, H.-S.P., Appl. Phys. Lett. 95, 071910 (2009).CrossRefGoogle Scholar
Park, I.-M., Jung, J.-K., Ryu, S.-O., Choi, K.-J., Yu, B.-G., Park, Y.-B., Han, S.M., Joo, Y.-C., Thin Solid Films 517, 848 (2008).CrossRefGoogle Scholar
Crespi, L., Lacaita, A., Boniardi, M., Varesi, E., Ghetti, A., Redaelli, A., D’Arrigo, G., 2015 IEEE International Memory Workshop (IMW) (IEEE, Monterey, CA, 2015), doi:10.1109/IMW.2015.7150296.Google Scholar
Padilla, A., Burr, G.W., Virwani, K., Debunne, A., Rettner, C.T., Topuria, T., Rice, P.M., Jackson, B., Dupouy, D., Kellock, A.J., Shelby, R.M., Gopalakrishnan, K., Shenoy, R.S., Kurdi, B.N., 2010 International Electron Devices Meeting (IEDM) (IEEE, San Francisco, 2010), pp. 29.4.129.4.4.Google Scholar
Padilla, A., Burr, G.W., Rettner, C.T., Topuria, T., Rice, P.M., Jackson, B., Virwani, K., Kellock, A.J., Dupouy, D., Debunne, A., Shelby, R.M., Gopalakrishnan, K., Shenoy, R.S., Kurdi, B.N., J. Appl. Phys. 110, 054501 (2011).CrossRefGoogle Scholar
Goux, L., Tio Castro, D., Hurkx, G.A.M., Lisoni, J.G., Delhougne, R., Gravesteijn, D.J., Attenborough, K., Wouters, D.J., IEEE Trans. Electron Devices 56, 354 (2009).CrossRefGoogle Scholar
Calderoni, A., Ferro, M., Varesi, E., Fantini, P., Rizzi, M., Ielmini, D., 2012 4th IEEE International Memory Workshop (IEEE, Milan, Italy, 2012), doi:10.1109/IMW.2012.6213675.Google Scholar
Du, P.-Y., Wu, J.-Y., Hsu, T.-H., Lee, M.-H., Wang, T.-Y., Cheng, H.-Y., Lai, E.-K., Lai, S.-C., Lung, H.-L., Kim, S., Breitwisch, M., Zhu, Y., Mittal, S., Cheek, R., Raoux, S., Joseph, E.A., Schrott, A., Li, J., Lam, C., 2012 IEEE International Reliability Physics Symposium (IRPS) (IEEE, Anaheim, CA, 2012), pp. 6C.2.16C.2.6.Google Scholar
Novielli, G., Ghetti, A., Varesi, E., Mauri, A., Sacco, R., 2013 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2013), pp. 22.3.122.3.4.CrossRefGoogle Scholar
Servalli, G., 2009 IEEE International Electron Devices Meeting (IEDM) (IEEE, Baltimore, 2009), pp. 5.7.15.7.4.Google Scholar
Castro, D.T., Goux, L., Hurkx, G.A.M., Attenborough, K., Delhougne, R., Lisoni, J., Jedema, F.J., M.A.A. in `T Zandt, Wolters, R.A.M., Gravesteijn, D.J., Verheijen, M.A., Kaiser, M., Weemaes, R.G.R., Wouters, D.J., 2007 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2007), pp. 315318.CrossRefGoogle Scholar
Faraclas, A., Bakan, G., Adnane, L., Dirisaglik, F., Williams, N.E., Gokirmak, A., Silva, H., IEEE Trans. Electron Devices 61, 372 (2014).CrossRefGoogle Scholar
Salinga, M., Kersting, B., Ronneberger, I., Jonnalagadda, V.P., Vu, X.T., Le Gallo, M., Giannopoulos, I., Cojocaru-Mirédin, O., Mazzarello, R., Sebastian, A., Nat. Mater. 17, 681 (2018).CrossRefGoogle Scholar
Zhang, W., Ma, E., Nat. Mater. 17, 654 (2018).CrossRefGoogle Scholar
Kim, W., BrightSky, M., Masuda, T., Sosa, N., Kim, S., Bruce, R., Carta, F., Fraczak, G., Cheng, H.Y., Ray, A., Zhu, Y., Lung, H.-L., Suu, K., Lam, C., 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, 2016), pp. 4.2.14.2.4.CrossRefGoogle Scholar
Kim, W., Kim, S., Bruce, R., Carta, F., Fraczak, G., Ray, A., Lam, C., BrightSky, M., Zhu, Y., Masuda, T., Suu, K., Xie, Y., Kim, Y., Cha, J.J., 2018 IEEE International Reliability Physics Symposium (IRPS) (IEEE, Burlingame, CA, 2018), pp. 6D.5-16D.5-5.CrossRefGoogle Scholar
Cheng, H.-Y., BrightSky, M., Raoux, S., Chen, C.F., Du, P.Y., Wu, J.Y., Lin, Y.Y., Hsu, T.H., Zhu, Y., Kim, S., Lin, C.M., Ray, A., Lung, H.-L., Lam, C., 2013 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2013), pp. 30.6.130.6.4.CrossRefGoogle Scholar
BrightSky, M., Sosa, N., Masuda, T., Kim, W., Kim, S., Ray, A., Bruce, R., Gonsalves, J., Zhu, Y., Suu, K., Lam, C., 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2015), pp. 3.6.13.6.4.Google Scholar
Xie, Y., Kim, W., Kim, Y., Kim, S., Gonsalves, J., BrightSky, M., Lam, C., Zhu, Y., Cha, J.J., Adv. Mater. 30, 1705587 (2018).CrossRefGoogle Scholar
Kim, S., Du, P.Y., Li, J., Breitwisch, M., Zhu, Y., Mittal, S., Cheek, R., Hsu, T.-H., Lee, M.H., Schrott, A., Raoux, S., Cheng, H.Y., Lai, S.-C., Wu, J.Y., Wang, T.Y., Joseph, E.A., Lai, E.K., Ray, A., Lung, H.-L., Lam, C., Proc. 2012 Int. Symp. VLSI Technol. Syst. Appl. (IEEE, Hsinchu, Taiwan, 2012), doi:10.1109/VLSI-TSA.2012.6210122.Google Scholar
Rao, F., Ding, K., Zhou, Y., Zheng, Y., Xia, M., Lv, S., Song, Z., Feng, S., Ronneberger, I., Mazzarello, R., Zhang, W., Ma, E., Science 358, 1423 (2017).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 14
Total number of PDF views: 300 *
View data table for this chart

* Views captured on Cambridge Core between 05th September 2019 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-6d4bddd689-k8xqc Total loading time: 2.389 Render date: 2020-12-01T14:48:56.648Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 14:43:26 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phase-change memory cycling endurance
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Phase-change memory cycling endurance
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Phase-change memory cycling endurance
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *