Skip to main content Accessibility help
×
Home

Article contents

Phase-change materials: The view from the liquid phase and the metallicity parameter

Published online by Cambridge University Press:  05 September 2019

Shuai Wei
Affiliation:
Institute of Physics, RWTH Aachen University, Germany; swei@physik.rwth-aachen.de
Pierre Lucas
Affiliation:
Department of Materials Science and Engineering, The University of Arizona, USA; Pierre@u.arizona.edu
C. Austen Angell
Affiliation:
School of Molecular Sciences, Arizona State University, USA; caa@asu.edu
Corresponding
Get access

Abstract

While fast-switching rewritable nonvolatile memory units based on phase-change materials (PCMs) are already in production at major technology companies such as Intel (16–64 GB chips are currently available), an in-depth understanding of the physical factors that determine their success is still lacking. Recently, we have argued for a liquid-phase metal-to-semiconductor transition (M-SC), located not far below the melting point, Tm, as essential. The M-SC is itself a consequence of atomic rearrangements that are involved in a fragile-to-strong viscosity transition that controls both the speed of crystallization and the stabilization of the semiconducting state. Here, we review past work and introduce a new parameter, the “metallicity” (inverse of the average Pauling electronegativity of a multicomponent alloy). When Tm-scaled temperatures of known M-SCs of Group IV, V, and VI alloys are plotted against their metallicities, the curvilinear plot leads directly to the composition zone of all known PCMs and the temperature interval below Tm, where the transition should occur. The metallicity concept could provide guidance for tailoring PCMs.

Type
Phase-Change Materials in Electronics and Photonics
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Eggleton, B.J., Luther-Davies, B., Richardson, K., Nat. Photonics 5, 141 (2011).CrossRefGoogle Scholar
Tveryanovich, Y.S., Ushakov, V.M., Tverjanovich, A., J. Non Cryst. Solids 197, 235 (1996).CrossRefGoogle Scholar
Ovshinsky, S.R., Phys. Rev. Lett. 21, 1450 (1968).CrossRefGoogle Scholar
Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Takao, M., Jpn. J. Appl. Phys. 26, 61 (1987).CrossRefGoogle Scholar
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M., J. Appl. Phys. 69, 2849 (1991).CrossRefGoogle Scholar
Wuttig, M., Nat. Mater. 4, 265 (2005).CrossRefGoogle Scholar
Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
Orava, J., Greer, L., Gholipour, B., Hewak, D.W., Smith, C.E., Nat. Mater. 11, 279 (2012).CrossRefGoogle Scholar
Loke, D., Skelton, J.M., Wang, W.-J., Lee, T.-H., Zhao, R., Chong, T.-C., Elliott, S.R., Proc. Natl. Acad. Sci. U.S.A. 111, 13272 (2014).CrossRefGoogle Scholar
Wei, S., Lucas, P., Angell, C.A., J. Appl. Phys. 118, 034903 (2015).CrossRefGoogle Scholar
Wei, S., Coleman, G.J., Lucas, P., Angell, C.A., Phys. Rev. Appl. 7, 034035 (2017).CrossRefGoogle Scholar
Wei, S., Evenson, Z., Stolpe, M., Lucas, P., Angell, C.A., Sci. Adv. 4, eaat8632 (2018).CrossRefGoogle Scholar
Bordas, S., Clavaguer-Mora, M.T., Legendre, B., Hancheng, C., Thermochim. Acta 107, 239 (1986).CrossRefGoogle Scholar
Wong, H.S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., Goodson, K.E., Proc. IEEE 98, 2201 (2010).CrossRefGoogle Scholar
Wuttig, M., Deringer, V.L., Gonze, X., Bichara, C., Raty, J.-Y., Adv. Mater. 30, 1803777 (2018).CrossRefGoogle Scholar
Zhang, W., Mazzarello, R., Wuttig, M., Ma, E., Nat. Rev. Mater. 4, 150 (2019).CrossRefGoogle Scholar
Angell, C.A., Ann. Rev. Phys. Chem. 34, 593 (1983).CrossRefGoogle Scholar
Angell, C.A., Essman, U., Hemmati, M., Poole, P.H., Sciortino, F., Physica A 205, 122 (1994)Google Scholar
Hosokawa, S., Sakaguchi, Y., Tamura, K., J. Non Cryst. Solids 150, 35 (1992).CrossRefGoogle Scholar
Otjacques, C., Raty, J.-Y., Gaspard, J.-P., Tsuchiya, Y., Bichara, C., in Collection SFN (EDP Sciences, 2011), pp. 233245.Google Scholar
Tsuchiya, Y., J. Phys. Condens. Matter 3, 3163 (1991).CrossRefGoogle Scholar
Steimer, C., Coulet, V., Welnic, W., Dieker, H., Detemple, R., Bichara, C., Beuneu, B., Gaspard, J.-P., Wuttig, M., Adv. Mater. 20, 4535 (2008).CrossRefGoogle Scholar
Njoroge, W.K., Wöltgens, H.-W., Wuttig, M., J. Vac. Sci. Technol. A 20, 230 (2002).CrossRefGoogle Scholar
Chopra, K.L., Bahl, S.K., J. Appl. Phys. 40, 4171 (1969).CrossRefGoogle Scholar
Quinn, R.K., Mater. Res. Bull. 9, 803 (1974).CrossRefGoogle Scholar
Betts, F., Bienenstock, A., Keating, D.T., deNeufville, J.P., J. Non Cryst. Solids 7, 417 (1972).CrossRefGoogle Scholar
Thurn, H., Ruska, J., Z. Anorg. Allg. Chem. 426, 237 (1976).CrossRefGoogle Scholar
Hosokawa, S., Yamada, S., Tamura, K., J. Non Cryst. Solids 156, 708 (1993).CrossRefGoogle Scholar
Sastry, S., Angell, C.A., Nat. Mater. 2, 739 (2003).CrossRefGoogle Scholar
Nagels, P., Rotti, M., Vikhrov, S., J. Phys. Colloq. 42, C4 (1981).CrossRefGoogle Scholar
Tsuchiya, Y., J. Non Cryst. Solids. 312–314, 212 (2002).CrossRefGoogle Scholar
Alekseev, V.A., Andreev, A.A., Sadovskii, M.V., Sov. Phys. Usp. 23, 551 (1980).CrossRefGoogle Scholar
Hosokawa, S., Sakaguchi, Y., Hiasa, H., Tamura, K., J. Phys. Condens. Matter 3, 6673 (1991).CrossRefGoogle Scholar
Kakinuma, F., Ohno, S., J. Phys. Soc. Jpn. 56, 619 (1987).CrossRefGoogle Scholar
Allred, A.L., J. Inorg. Nucl. Chem. 17, 215 (1961).CrossRefGoogle Scholar
Kakinuma, F., Ohno, S., Suzuki, K., J. Non Cryst. Solids 117, 575 (1990).CrossRefGoogle Scholar
Krebs, H., Ruska, J., J. Non Cryst. Solids 16, 329 (1974).CrossRefGoogle Scholar
Bhat, M.H., Molinero, V., Soignard, E., Solomon, V.C., Sastry, S., Yarger, J.L., Angell, C.A., Nature 448, 787 (2007).CrossRefGoogle Scholar
Zalden, P., Quirin, F., Schumacher, M., Siegel, J., Wei, S., Koc, A., Nicoul, M., Trigo, M., Andreasson, P., Enquist, H., Shu, M.J., Pardini, T., Chollet, M., Zhu, D., Lemke, H., Ronneberger, I., Larsson, J., Lindenberg, A.M., Fischer, H.E., Hau-Riege, S., Reis, D.A., Mazzarello, R., Wuttig, M., Sokolowski-Tinten, K., Science 364, 1062 (2019).CrossRefGoogle Scholar
Zhu, M., Cojocaru-Mirédin, O., Mio, A.M., Keutgen, J., Küpers, M., Yu, Y., Cho, J.-Y., Dronskowski, R., Wuttig, M., Adv. Mater. 30, 1706735 (2018).CrossRefGoogle Scholar
Han, N., Kim, S.I., Yang, J.-D., Lee, K., Sohn, H., So, H.-M., Ahn, C.W., Yoo, K.-H., Adv. Mater. 23, 1871 (2011).CrossRefGoogle Scholar
Lee, T.-Y., Kim, C., Kang, Y., Suh, D.-S., Kim, K.H.P., Khang, Y., Appl. Phys. Lett. 92, 101908 (2008).CrossRefGoogle Scholar
Raty, J.-Y., Schumacher, M., Golub, P., Deringer, V.L., Gatti, C., Wuttig, M., Adv. Mater. 31, 1806280 (2019).CrossRefGoogle Scholar
Adam, G., Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
Angell, C.A., Science 267, 1924 (1995).CrossRefGoogle Scholar
Wei, S., Stolpe, M., Gross, O., Hembree, W., Hechler, S., Bednarcik, J., Busch, R., Lucas, P., Acta Mater . 129, 259 (2017).CrossRefGoogle Scholar
Orava, J., Weber, H., Kaban, I., Greer, A.L., J. Chem. Phys. 144, 194503 (2016).CrossRefGoogle Scholar
Orava, J., Hewak, D.W., Greer, A.L., Adv. Funct. Mater. 25, 4851 (2015).CrossRefGoogle Scholar
Zalden, P., von Hoegen, A., Landreman, P., Wuttig, M., Lindenberg, A.M., Chem. Mater. 27, 5641 (2015).CrossRefGoogle Scholar
Salinga, M., Carria, E., Kaldenbach, A., Bornhöfft, M., Benke, J., Mayer, J., Wuttig, M., Nat. Commun. 4, 2371 (2013).CrossRefGoogle Scholar
Zhang, W., Ronneberger, I., Zalden, P., Xu, M., Salinga, M., Wuttig, M., Mazzarello, R., Sci. Rep. 4, 6529 (2014).CrossRefGoogle Scholar
Flores-Ruiz, H., Micoulaut, M., J. Chem. Phys. 148, 034502 (2018).CrossRefGoogle Scholar
Weber, H., Orava, J., Kaban, I., Pries, J., Greer, A.L., Phys. Rev. Mater. 2, 093405 (2018).CrossRefGoogle Scholar
Chen, B., ten Brink, G.H., Palasantzas, G., Kooi, B.J., J. Phys. Chem. C. 121, 8569 (2017).CrossRefGoogle Scholar
Götze, W., J. Phys. Condens. Matter 11, A1 (1999).CrossRefGoogle Scholar
Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W., J. Appl. Phys. 88, 3113 (2000).CrossRefGoogle Scholar
Schumacher, M., Weber, H., Jóvári, P., Tsuchiya, Y., Youngs, T.G., Kaban, I., Mazzarello, R., Sci. Rep. 6, 27434 (2016).CrossRefGoogle Scholar
Kalb, J.A., Wuttig, M., Spaepen, F., J. Mater. Res. 22, 748 (2007).CrossRefGoogle Scholar
Herwig, F., Wobst, M., Z. Für Met. 83, 35 (1992).Google Scholar
Neumann, H., Herwig, F., Hoyer, W., J. Non Cryst. Solids 205–207 (Pt. 1), 438 (1996).CrossRefGoogle Scholar
Tverjanovich, A., J. Non Cryst. Solids 298, 226 (2002).CrossRefGoogle Scholar
Tverjanovich, A.S., Glass Phys. Chem. 29, 532 (2003).CrossRefGoogle Scholar
Yannopoulos, S.N., Papatheodorou, G.N., Fytas, G., Phys. Rev. B 60, 15131 (1999).CrossRefGoogle Scholar
Rhim, W.-K., Ohsaka, K., J. Cryst. Growth 208, 313 (2000).CrossRefGoogle Scholar
Pries, J., Cojocaru-Miredin, O., Wuttig, M., MRS Bull. 44 (9), 699 (2019).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 242 *
View data table for this chart

* Views captured on Cambridge Core between 05th September 2019 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-4qfsd Total loading time: 0.211 Render date: 2021-01-20T16:55:43.437Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phase-change materials: The view from the liquid phase and the metallicity parameter
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Phase-change materials: The view from the liquid phase and the metallicity parameter
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Phase-change materials: The view from the liquid phase and the metallicity parameter
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *