Skip to main content Accessibility help

Article contents

Mechanics of Crystalline Nanowires

Published online by Cambridge University Press:  31 January 2011

Get access


Nanowires are among the most exciting one-dimensional nanomaterials because of their unique properties, which result primarily from their chemical composition and large surface area to volume ratio. These properties make them ideal building blocks for the development of next generation electronics, opto-electronics, and sensor systems. In this article, we focus on the unique mechanical properties of nanowires, which emerge from surface atoms having different electron densities and fewer bonding neighbors than atoms lying within the nanowire bulk. In this respect, atomistic simulations have revealed a plethora of novel surface-driven mechanical behavior and properties, including both increases and decreases in elastic stiffness, phase transformations, shape memory, and pseudoelastic effects. This article reviews such atomistic simulations, as well as experimental data of these phenomena, while assessing future challenges and directions.

Research Article
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.


1Lieber, C.M., Wang, Z.L., MRS Bull. 32, 99 (2007).CrossRefGoogle Scholar
2Craighead, H.G., Science 290, 1532 (2000).CrossRefGoogle Scholar
3Sun, C.Q., Tay, B.K., Zeng, X.T., Li, S., Chen, T.P., Zhou, J., Bai, H.L., Jiang, E.Y., J. Phys.: Condens. Matter 14, 7781 (2002).Google Scholar
4Cammarata, R.C., Progr. Surf. Sci. 46, 1 (1994).CrossRefGoogle Scholar
5Gurtin, M.E., Murdoch, A., Arch. Ration. Mech. Anal. 57, 291 (1975).CrossRefGoogle Scholar
6Wan, J., Fan, Y.L., Gong, D.W., Shen, S.G., Fan, X.Q., Modell. Simul. Mater. Sci. Eng. 7, 189 (1999).CrossRefGoogle Scholar
7Zhou, L.G., Huang, H., Appl. Phys. Lett. 84, 1940 (2004).CrossRefGoogle Scholar
8Shim, H.W., Zhou, L.G., Huang, H., Cale, T.S., Appl. Phys. Lett. 86, 151912 (2005).CrossRefGoogle Scholar
9Kang, K., Cai, W., Philos. Mag. 87, 2169 (2007).CrossRefGoogle Scholar
10Agrawal, R., Peng, B., Gdoutos, E., Espinosa, H.D., Nano Lett. 8, 3668 (2008).CrossRefGoogle Scholar
11Lee, B., Rudd, R.E., Phys. Rev. B 75, 195328 (2007).CrossRefGoogle Scholar
12Kang, K., Cai, W. (2008), submitted.Google Scholar
13Zhang, L., Huang, H., Appl. Phys. Lett. 90, 023115 (2007).CrossRefGoogle Scholar
14Gall, K., Diao, J., Dunn, M.L., Nano Lett. 4, 2431 (2004).CrossRefGoogle Scholar
15Zhu, T., Li, J., Samanta, A., Leach, A., Gall, K., Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle Scholar
16Wu, B., Heidelberg, A., Boland, J.J., Nat. Mater. 4, 525 (2005).CrossRefGoogle Scholar
17Heidelberg, A., Ngo, L.T., Wu, B., Phillips, M.A., Sharma, S., Kamins, T.I., Sader, J.E., Boland, J.J., Nano Lett. 6, 1101 (2006).CrossRefGoogle Scholar
18Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B., Phys. Rev. B 69, 165410 (2004).CrossRefGoogle Scholar
19Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P., Phys. Rev. B 73, 235409 (2006).CrossRefGoogle Scholar
20Petrova, H., Perez-Juste, J., Zhang, Z.Y., Zhang, J., Kosel, T., Hartland, G.V., J. Mater. Chem. 16, 3957 (2006).CrossRefGoogle Scholar
21Liang, H., Upmanyu, M., Huang, H., Phys. Rev. B 71, 241403(R) (2005).CrossRefGoogle Scholar
22Dingreville, R., Qu, J., Cherkaoui, M., J. Mech. Phys. Solids 53, 1827 (2005).CrossRefGoogle Scholar
23Miller, R.E., Shenoy, V.B., Nanotechnology 11, 139 (2000).CrossRefGoogle Scholar
24Diao, J., Gall, K., Dunn, M.L., J. Mech. Phys. Solids 52, 1935 (2004).CrossRefGoogle Scholar
25McDowell, M.T., Leach, A.M., Gall, K., Modell. Simul. Mater. Sci. Eng. 16, 045003 (2008).CrossRefGoogle Scholar
26Park, H.S., Klein, P.A., J. Mech. Phys. Solids 56, 3144 (2008).CrossRefGoogle Scholar
27Li, X., Ono, T., Wang, Y., Esashi, M., Appl. Phys. Lett. 83, 3081 (2003).CrossRefGoogle Scholar
28Kizuka, T., Takatani, Y., Asaka, K., Yoshizaki, R., Phys. Rev. B 72, 035333 (2005).CrossRefGoogle Scholar
29Han, X., Zheng, K., Zhang, Y.F., Zhang, X., Zhang, Z., Wang, Z.L., Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
30Desai, A.V., Haque, M.A., Sens. Actuators, A 134, 169 (2007).CrossRefGoogle Scholar
31Paulo, A.S., Bokor, J., Howe, R.T., He, R., Yang, P., Gao, D., Carraro, C., Maboudian, R., Appl. Phys. Lett. 87, 053111 (2005).CrossRefGoogle Scholar
32Tabib-Azar, M., Nassirou, M., Wang, R., Sharma, S., Kamins, T.I., Islam, M.S., Williams, R.S., Appl. Phys. Lett. 87, 113102 (2005).CrossRefGoogle Scholar
33Huang, Y., Bai, X., Zhang, Y., J. Phys.: Condens. Matter 18, L179 (2006).Google Scholar
34Wong, E.W., Sheehan, P.E., Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
35Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J., Phys. Rev. Lett. 96, 075505 (2006).CrossRefGoogle Scholar
36Lucas, M., Mai, W., Yang, R., Wang, Z.L., Riedo, E., Nano Lett. 7, 1314 (2007).CrossRefGoogle Scholar
37Bai, X.D., Gao, P.X., Wang, Z.L., Wang, E.G., Appl. Phys. Lett. 82, 4806 (2003).CrossRefGoogle Scholar
38Stan, G., Ciobanu, C.V., Parthangal, P.M., Cook, R.F., Nano Lett. 7, 3691 (2007).CrossRefGoogle Scholar
39Kulkarni, A.J., Zhou, M., Ke, F.J., Nanotechnology 16, 2749 (2005).CrossRefGoogle Scholar
40Broughton, J.Q., Meli, C.A., Vashishta, P., Kalia, R.K., Phys. Rev. B 56, 611 (1997).CrossRefGoogle Scholar
41Cao, G., Chen, X., Phys. Rev. B 76, 165407 (2007).CrossRefGoogle Scholar
42Zhang, L., Huang, H., Appl. Phys. Lett. 89, 183111 (2006).CrossRefGoogle Scholar
43Agrawal, R., Peng, B., Gdoutos, E., Espinosa, H.D. (2008), submitted.Google Scholar
44Zhu, Y., Espinosa, H.D., Proc. Nat. Acad. Sci. 102, 14503 (2005).CrossRefGoogle Scholar
45Zhu, Y., Moldovan, N., Espinosa, H.D., Appl. Phys. Lett. 86, 013506 (2005).CrossRefGoogle Scholar
46Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D., Nat. Nanotechnol. 3, 626 (2008).CrossRefGoogle Scholar
47Park, H.S., J. Appl. Phys. 103, 123504 (2008).CrossRefGoogle Scholar
48Li, M., Mayer, T.S., Sioss, J.A., Keating, C.D., Bhiladvala, R.B., Nano Lett. 7, 3281 (2007).CrossRefGoogle Scholar
49Park, H.S., Zimmerman, J.A., Phys. Rev. B 72, 054106 (2005).CrossRefGoogle Scholar
50Diao, J., Gall, K., Dunn, M.L., Nano Lett. 4, 1863 (2004).CrossRefGoogle Scholar
51Park, H.S., Gall, K., Zimmerman, J.A., J. Mech. Phys. Solids 54, 1862 (2006).CrossRefGoogle Scholar
52Monk, J., Farkas, D., Philos. Mag. 87, 2233 (2007).CrossRefGoogle Scholar
53Mehrez, H., Ciraci, S., Phys. Rev. B 56, 12632 (1997).CrossRefGoogle Scholar
54Leach, A.M., McDowell, M., Gall, K., Adv. Funct. Mater. 17, 43 (2007).CrossRefGoogle Scholar
55Wang, Z., Zu, X., Yang, L., Gao, F., Weber, W.J., Phys. Rev. B 76, 045310 (2007).CrossRefGoogle Scholar
56Koh, A.S.J., Lee, H.P., Nano Lett. 6, 2260 (2006).CrossRefGoogle Scholar
57Ji, C., Park, H.S., Appl. Phys. Lett. 89, 181916 (2006).CrossRefGoogle Scholar
58Hyde, B., Espinosa, H.D., Farkas, D., JOM 57, 62 (2005).CrossRefGoogle Scholar
59Cao, A., Wei, Y., Phys. Rev. B 74, 214108 (2006).CrossRefGoogle Scholar
60Lin, Y.-C., Pen, D.-J., Nanotechnology 18, 395705 (2007).CrossRefGoogle Scholar
61Coura, P.Z., Legoas, S.G., Moreira, A.S., Sato, F., Rodrigues, V., Dantas, S.O., Ugarte, D., Galvao, D.S., Nano Lett. 4, 1187 (2004).CrossRefGoogle Scholar
62Menon, M., Srivastava, D., Ponomareva, I., Chernozatonskii, L.A., Phys. Rev. B 70, 125313 (2004).CrossRefGoogle Scholar
63Agrait, N., Rubio, G., Vieira, S., Phys. Rev. Lett. 74, 3995 (1995).CrossRefGoogle Scholar
64da Silva, E.Z., da Silva, A.J.R., Fazzio, A., Phys. Rev. Lett. 87, 256102 (2001).CrossRefGoogle Scholar
65Landman, U., Luedtke, W.D., Salisbury, B.E., Whetten, R.L., Phys. Rev. Lett. 77, 1362 (1996).CrossRefGoogle Scholar
66Liang, W., Zhou, M., Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci. 218, 599 (2004).CrossRefGoogle Scholar
67Brandbyge, M., Schiotz, J., Sorensen, M.R., Stoltze, P., Jacobsen, K.W., Norskov, J.K., Olesen, L., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Phys. Rev. B 52, 8499 (1995).CrossRefGoogle Scholar
68Sorensen, M.R., Brandbyge, M., Jacobsen, K.W., Phys. Rev. B 57, 3283 (1998).CrossRefGoogle Scholar
69Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A., Acta Mater. 54, 643 (2006).CrossRefGoogle Scholar
70Marszalek, P.E., Greenleaf, W.J., Li, H., Oberhauser, A.F., Fernandez, J.M., Proc. Nat. Acad. Sci. 97, 6282 (2000).CrossRefGoogle Scholar
71Rodrigues, V., Fuhrer, T., Ugarte, D., Phys. Rev. Lett. 85, 4124 (2000).CrossRefGoogle Scholar
72Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X., Li, Y., Nano Lett. 6, 468 (2006).CrossRefGoogle Scholar
73Wang, J., Huang, H., Appl. Phys. Lett. 88, 203112 (2006).CrossRefGoogle Scholar
74Afanasyev, K.A., Sansoz, F., Nano Lett. 7, 2056 (2007).CrossRefGoogle Scholar
75Zhang, Y., Huang, H., Nanoscale Res. Lett. 4, 34 (2009).CrossRefGoogle Scholar
76Diao, J., Gall, K., Dunn, M.L., Nat. Mater. 2, 656 (2003).CrossRefGoogle Scholar
77Diao, J., Gall, K., Dunn, M.L., Phys. Rev. B 70, 075413 (2004).Google Scholar
78Liang, W., Zhou, M., Ke, F., Nano Lett. 5, 2039 (2005).CrossRefGoogle Scholar
79Park, H.S., Nano Lett. 6, 958 (2006).CrossRefGoogle Scholar
80Liang, W., Zhou, M., J. Eng. Mater. Technol. 127, 423 (2005).Google Scholar
81Liang, W., Zhou, M., Phys. Rev. B 73, 115409 (2006).CrossRefGoogle Scholar
82Park, H.S., Ji, C., Acta Mater. 54, 2645 (2006).CrossRefGoogle Scholar
83Kondo, Y., Takayanagi, K., Phys. Rev. Lett. 79, 3455 (1997).CrossRefGoogle Scholar
84Kondo, Y., Ru, Q., Takayanagi, K., Phys. Rev. Lett. 82, 751 (1999).CrossRefGoogle Scholar
85Kulkarni, A.J., Zhou, M., Sarasamak, K., Limpijumnong, S., Phys. Rev. Lett. 97, 105502 (2006).CrossRefGoogle Scholar
86Wang, J., Kulkarni, A.J., Sarasamak, K., Limpijumnong, S., Ke, F.J., Zhou, M., Phys. Rev. B 76, 172103 (2007).CrossRefGoogle Scholar
87Gao, P.X., Mai, W., Wang, Z.L., Nano Lett. 6, 2536 (2006).CrossRefGoogle Scholar
88Gavini, V., Bhattacharya, K., Ortiz, M., J. Mech. Phys. Solids 55, 697 (2006).CrossRefGoogle Scholar
89Fago, M., Hayes, R.L., Carter, E.A., Ortiz, M., Phys. Rev. B 70, 100102(R) (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 387 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kdwz2 Total loading time: 0.442 Render date: 2021-01-23T15:34:05.554Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanics of Crystalline Nanowires
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanics of Crystalline Nanowires
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanics of Crystalline Nanowires
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *