Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-9nx8b Total loading time: 0.363 Render date: 2023-01-31T21:50:00.118Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article provides a brief overview of recent progress in the synthesis and functionalization of magnetic nanoparticles and their applications in the early detection of malignant tumors by magnetic resonance imaging (MRI). The intrinsic low sensitivity of MRI necessitates the use of large quantities of exogenous contrast agents in many imaging studies. Magnetic nanoparticles have recently emerged as highly efficient MRI contrast agents because these nanometer-scale materials can carry high payloads while maintaining the ability to move through physiological systems. Superparamagnetic ferrite nanoparticles (such as iron oxide) provide excellent negative contrast enhancement. Recent refinement of synthetic methodologies has led to ferrite nanoparticles with narrow size distributions and high crystallinity. Target-specific tumor imaging becomes possible through functionalization of ferrite nanoparticles with targeting agents to allow for site-specific accumulation. Nanoparticulate contrast agents capable of positive contrast enhancement have recently been developed in order to overcome the drawbacks of negative contrast enhancement afforded by ferrite nanoparticles. These newly developed magnetic nanoparticles have the potential to enable physicians to diagnose cancer at the earliest stage possible and thus can have an enormous impact on more effective cancer treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Stark, D.D., Bradley, W.G. Jr., Magnetic Resonance Imaging (Mosby, St. Louis, 1999).Google Scholar
2Aime, S., Botta, M., Fasano, M., Terreno, E., Chem. Soc. Rev. 27, 19 (1998).CrossRefGoogle Scholar
3Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Chem. Rev. 99, 2293 (1999).CrossRefGoogle Scholar
4Larson, S.M., Cancer 67, (Suppl. 4), 1253 (1991).3.0.CO;2-J>CrossRefGoogle Scholar
5Yang, D.J., Kim, E.E., Inoue, T., Ann. Nucl. Med. 20, 1 (2006).CrossRefGoogle Scholar
6Gupta, H., Weissleder, R., Magn. Reson. Imaging Clin. N. Am. 4, 171 (1996).Google Scholar
7Petersein, J., Saini, S., Weissleder, R., Magn. Reson. Imaging Clin. N. Am. 4, 53 (1996).Google Scholar
8Corot, C., Robert, P., Idee, J.M., Port, M., Adv. Drug Deliv. Rev. 58, 1471 (2006).CrossRefGoogle Scholar
9Mendonca Dias, M.H., Lauterbur, P.C., Magn. Reson. Med. 3, 328 (1986).CrossRefGoogle Scholar
10Semelka, R.C., Helmberger, T.K., Radiology 218, 27 (2001).CrossRefGoogle Scholar
11Kang, H.W., Josephson, L., Petrovsky, A., Weissleder, R., Bogdanov, A., Jr., Bioconjug. Chem. 13, 122 (2002).CrossRefGoogle Scholar
12Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., van de Kaa, C.H., de la Rosette, J., Weissleder, R., N. Engl. J. Med. 348, 2491 (2003).CrossRefGoogle Scholar
13Harisinghani, M.G., Jhaveri, K.S., Weissleder, R., Schima, W., Saini, S., Hahn, P.F., Mueller, P.R., Clin. Radiol. 56, 714 (2001).CrossRefGoogle Scholar
14Harisinghani, M.G., Saini, S., Weissleder, R., Halpern, E.F., Schima, W., Rubin, D.L., Stillman, A.E., Sica, G.T., Small, W.C., Hahn, P.F., Radiology 202, 687 (1997).CrossRefGoogle Scholar
15Weissleder, R., Elizondo, G., Stark, D.D., Hahn, P.F., Marfil, J., Gonzalez, J.F., Saini, S., Todd, L.E., Ferrucci, J.T., Am. J. Roentgenol. 152, 175 (1989).CrossRefGoogle Scholar
16Montet, X., Weissleder, R., Josephson, L., Bioconjug. Chem. 17, 905 (2006).CrossRefGoogle Scholar
17Kelly, K.A., Allport, J.R., Tsourkas, A., Shinde-Patil, V.R., Josephson, L., Weissleder, R., Circ. Res. 96, 327 (2005).CrossRefGoogle Scholar
18Schellenberger, E.A., Hogemann, D., Josephson, L., Weissleder, R., Acad. Radiol. 9 (Suppl. 2), S310 (2002).CrossRefGoogle Scholar
19Koenig, S.H., Keller, K.E., Magn. Reson. Med. 34, 227 (1995).CrossRefGoogle Scholar
20Morales, M.P., Veintemillas-Verdaguer, S., Montero, M.I., Serna, C.J., Chem. Mater. 11, 3058 (1999).CrossRefGoogle Scholar
21 (a)Jeong, U., Teng, X., Wang, Y., Yang, H., Xia, Y., Adv. Mater. 19, 33 (2007).CrossRefGoogle Scholar
(b)Cheon, J., Lee, J.H., Acc. Chem. Res. 41, 1630 (2008).CrossRefGoogle Scholar
(c)Aslam, M., Schultz, E.A., Sun, T., Meade, T.J., Dravid, V.P., Cryst. Growth Design 7, 471 (2007).CrossRefGoogle Scholar
22Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., Hwang, N.-M., Hyeon, T., Nat. Mater. 3, 891 (2004).CrossRefGoogle Scholar
23Jun, Y.-W., Huh, Y.-M., Choi, J.-S., Lee, J.-H., Song, H.-T., Kim, S., Yoon, S., Kim, K.-S., Shin, J.-S., Suh, J.-S., Cheon, J., J. Am. Chem. Soc. 127, 5732 (2005).CrossRefGoogle Scholar
24Lee, J.-H., Huh, Y.-M., Jun, Y.-W., Seo, J.-W., Jang, J.-T., Song, H.-T., Kim, S., Cho, E.-J., Yoon, H.-G., Suh, J.-S., Cheon, J., Nat. Med. 13, 95 (2007).CrossRefGoogle Scholar
25Xu, C., Xu, K., Gu, H., Zheng, R., Liu, H., Zhang, X., Guo, Z., Xu, B., J. Am. Chem. Soc. 126, 9938 (2004).CrossRefGoogle Scholar
26Kim, J.S., Valencia, C.A., Liu, R., Lin, W., Bioconjug. Chem. 18, 333 (2007).CrossRefGoogle Scholar
27Kim, M., Chen, Y., Liu, Y., Peng, X., Adv. Mater. 17, 1429 (2005).CrossRefGoogle Scholar
28Kohler, N., Fryxell, G.E., Zhang, M., J. Am. Chem. Soc. 126, 7206 (2004).CrossRefGoogle Scholar
29Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I.C., Moon, W.K., Hyeon, T., Angew. Chem. Int. Ed. 47, 8438 (2008).CrossRefGoogle Scholar
30Bulte, J.W.M., Kraitchman, D.L., NMR Biomed. 17, 484 (2004).CrossRefGoogle Scholar
31Lanza, G.M., Winter, P.M., Caruthers, S.D., Hughes, M.S., Cyrus, T., Marsh, J.N., Neubauer, A.M., Partlow, K.C., Wickline, S.A., Nanomed 1 (3), 321 (2006).CrossRefGoogle Scholar
32Morawski, A.W., Winter, P.M., Crowder, K.C., Caruthers, S.D., Fuhrhop, R.W., Scott, M.J., Robertson, J.D., Abendschein, D.R., Lanza, G.M., Wickline, S.A., Magn. Reson. Med. 51, 480 (2004).CrossRefGoogle Scholar
33Caruthers, S.D., Wickline, S.A., Lanza, G.M., Curr. Opin. Biotechnol. 18, 26 (2007).CrossRefGoogle Scholar
34Winter, P.M., Caruthers, S.D., Kassner, A., Harris, T.D., Chinen, L.K., Allen, J.S., Lacy, E.K., Zhang, H., Robertson, J.D., Wickline, S.A., Lanza, G.M., Cancer Res. 63, 5838 (2003).Google Scholar
35Winter, P.M., Morawski, A.M., Caruthers, S.D., Fuhrhop, R.W., Zhang, H., Williams, T.A., Allen, J.S., Lacy, E.K., Robertson, J.D., Lanza, G.M., Wickline, S.A., Circulation 108, 2270 (2003).CrossRefGoogle Scholar
36Lanza, G.M., Abendschein, D.R., Hall, C.S., Marsh, J.N., Scott, M.J., Scherrer, D.E., Wickline, S.A., Invest. Radiol. 35, 227 (2000).CrossRefGoogle Scholar
37Zhu, D., White, R.D., Hardy, P.A., Weerapreeyakul, N., Sutthanut, K., Jay, M., J Nanosci. Nanotechnol. 6, 996 (2006).CrossRefGoogle Scholar
38Zhu, D., Lu, X., Hardy, P.A., Leggas, M., Jay, M., Invest. Radiol. 43, 129 (2008).CrossRefGoogle Scholar
39Kabalka, G., Buonocore, E., Hubner, K., Moss, T., Norley, N., Huang, L., Radiology 163, 255 (1987).CrossRefGoogle Scholar
(b)Kabalka, G.W., Buonocore, E., Hubner, K., Davis, M., Huang, L., Magn. Reson. Med. 8, 89 (1988).CrossRefGoogle Scholar
(c)Kabalka, G.W., Davis, M.A., Moss, T.H., Buonocore, E., Hubner, K., Holmberg, E., Maruyama, K., Huang, L., Magn. Reson. Med. 19, 406 (1991).CrossRefGoogle Scholar
40 (a)Unger, E.C., MacDougall, P., Cullis, P., Tilcock, C., Magn. Reson. Imaging 7, 417 (1989).CrossRefGoogle ScholarPubMed
(b)Unger, E.C., Winokur, T., MacDougall, P., Rosenblum, J., Clair, M., Gatenby, R., Tilcock, C., Radiology 171 (1), 81 (1989).CrossRefGoogle Scholar
(c)Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C., Nat. Med. 4, 623 (1998).CrossRefGoogle Scholar
41Kamaly, N., Kalber, T., Ahmad, A., Oliver, M.H., So, P.W., Herlihy, A.H., Bell, J.D., Jorgensen, M.R., Miller, A.D., Bioconjug. Chem. 19, 118 (2008).CrossRefGoogle Scholar
42Bridot, J.-L., Faure, A.-C., Laurent, S., Rivière, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.-L., Elst, L.V., Muller, R., Roux, S., Perriat, P., Tillement, O., J. Am. Chem. Soc. 129, 5076 (2007).CrossRefGoogle Scholar
43Evanics, F., Diamente, P.R., van Veggel, F.C.J.M., Stanisz, G.J., Prosser, R.S., Chem. Mater. 18, 2499 (2006).CrossRefGoogle Scholar
44Hifumi, H., Yamaoka, S., Tanimoto, A., Citterio, D., Suzuki, K., J. Am. Chem. Soc. 128, 15090 (2006).CrossRefGoogle Scholar
45Gilad, A.A., Walczak, P., McMahon, M.T., Na, H.B., Lee, J.H., An, K., Hyeon, T., van Zijl, P.C.M., Bulte, J.W.M., Magn. Reson. Med. 60, 1 (2008).CrossRefGoogle Scholar
46Na, H.B., Lee, J.H., An, K., Park, Y.I., Park, M., Lee, I.S., Nam, D.-H., Kim, S.T., Kim, S.-H., Kim, S.-W., Lim, K.-H., Kim, K.-Soo, Kim, S.-O., Hyeon, T., Angew. Chem. Int. Ed. 46, 5397 (2007).CrossRefGoogle Scholar
47Seo, W.S., Lee, J.H., Sun, X., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P.C., McConnell, M.V., Nishimura, D.G., Dai, H., Nat. Mater. 5, 971 (2006).CrossRefGoogle Scholar
48Rieter, W.J., Kim, J.S., Taylor, K.M.L., An, H., Lin, W., Tarrant, T., Lin, W., Angew. Chem. Int. Ed. Engl. 46, 3680 (2007).CrossRefGoogle Scholar
49Kim, J.S., Rieter, W.J., Taylor, K.M.L., An, H., Lin, W., Lin, W., J. Am. Chem. Soc. 129, 8962 (2007).CrossRefGoogle Scholar
50Folkman, J., Nature Med. 1, 27 (1995).CrossRefGoogle Scholar
51Taylor, K.M.L., Kim, J.S., Rieter, W.J., An, H., Lin, W., Lin, W., J. Am. Chem. Soc. 130, 2154 (2008).CrossRefGoogle Scholar
52Rieter, W.J., Taylor, K.M.L., An, H., Lin, W., Lin, W., J. Am. Chem. Soc. 128, 9024 (2006).CrossRefGoogle Scholar
53Rieter, W.J., Taylor, K.M.L., Lin, W., J. Am. Chem. Soc. 129, 9852 (2007).CrossRefGoogle Scholar
54Taylor, K.M.L., Rieter, W.J., Lin, W., J. Am. Chem. Soc. 130, 14358 (2008).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *