Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-8dvf2 Total loading time: 0.281 Render date: 2022-10-02T00:30:16.879Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Laser-induced acoustic desorption

Published online by Cambridge University Press:  09 May 2019

Xin Ma
Affiliation:
Department of Chemistry, Purdue University, USA; ma315@purdue.edu
Yuyang Zhang
Affiliation:
Department of Chemistry, Purdue University, USA; yuyang@purdue.edu
Hao-Ran Lei
Affiliation:
Department of Chemistry, Purdue University, USA; lei48@purdue.edu
Hilkka I. Kenttämaa
Affiliation:
Department of Chemistry, Purdue University, USA; hilkka@purdue.edu
Get access

Abstract

Laser-induced acoustic desorption (LIAD) enables the desorption of nonvolatile and/or thermally labile neutral compounds, such as asphaltenes, saturated hydrocarbons in base-oil fractions and biomolecules, from a metal surface into a mass spectrometer. This is a “gentle” evaporation technique and causes minimal fragmentation to the desorbed neutral molecules, including oligonucleotides and polypeptides. LIAD can be coupled with a wide range of ionization methods to facilitate analysis of the desorbed analytes by using many different types of mass spectrometers, including Fourier transform ion cyclotron resonance, linear quadrupole ion trap and quadrupole time-of-flight instruments. The development and improvement of LIAD remains an active research area with diverse goals such as better desorption efficiencies, minimized analyte fragmentation and greater versatility. This article details the theory, experimental methods, applications, and future directions of LIAD in combination with mass spectrometry.

Type
Acoustic Processes in Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Rapid Commun. Mass Spectrom. 2, 151 (1988).CrossRefGoogle Scholar
Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., Science 246, 64 (1989).CrossRefGoogle Scholar
Tak´ats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G., Science 306, 471 (2004).CrossRefGoogle Scholar
Lindner, B., Seydel, U., Anal. Chem. 57, 895 (1985).CrossRefGoogle Scholar
Pérez, J., Petzold, C.J., Watkins, M.A., Vaughn, W.E., Kenttämaa, H.I., J. Am. Soc. Mass Spectrom. 10, 1105 (1999).CrossRefGoogle Scholar
Shea, R.C., Petzold, C.J., Liu, J., Kenttämaa, H.I., Anal. Chem. 79, 1825 (2007).CrossRefGoogle Scholar
Sezer, U., Wörner, L., Horak, J., Felix, L., Tüxen, J., Götz, C., Vaziri, A., Mayor, M., Arndt, M., Anal. Chem. 87, 5614 (2015).CrossRefGoogle Scholar
Freund, L.B., Surech, S., Thin Film Materials: Stress, Defect Formation, and Surface Evolution, (Cambridge University Press, Cambridge, UK, 2004), ISBN 9780511754715.CrossRefGoogle Scholar
Cheng, S.-C., Huang, M.-Z., Shiea, J., Anal. Chem. 81, 9274 (2009).CrossRefGoogle Scholar
Lindner, B., Int. J. Mass Spectrom. 103, 203 (1991).CrossRefGoogle Scholar
Pérez, J., Ramírez-Arizmendi, L.E., Petzold, C.J., Guler, L.P., Nelson, E.D., Kenttämaa, H.I., Int. J. Mass Spectrom. 198, 173 (2000).CrossRefGoogle Scholar
Dow, A.R., Wittrig, A.M., Kenttämaa, H.I., Eur. J. Mass Spectrom. (Chichester) 18, 77 (2012).CrossRefGoogle Scholar
Hutchins, D.A., Dewhurst, R.J., Palmer, S.B., Scruby, C.B., Appl. Phys. Lett. 38, 677 (1981).CrossRefGoogle Scholar
Zinovev, A.V., Moore, J.F., Calaway, W.F., Pellin, M.J., Veryovkin, I.V., in Proc. SPIE, Kudryashov, A.V., Paxton, A.H., Ilchenko, V.S., Giesen, A., Nickel, D., Davis, S.J., Heaven, M.C., Schriempf, J.T., Eds. (SPIE-International Society of Optical Engineering, Washington, DC, 2006) p. U1011.Google Scholar
Zinovev, A.V., Veryovkin, I.V., Moore, J.F., Pellin, M.J., Anal. Chem. 79, 8232 (2007).CrossRefGoogle Scholar
Shea, R.C., Petzold, C.J., Campbell, J.L., Li, S., Aaserud, D.J., Kenttämaa, H.I., Anal. Chem. 78, 6133 (2006).CrossRefGoogle Scholar
Golovlev, V.V., Allman, S.L., Garrett, W.R., Chen, C.H., Appl. Phys. Lett. 71, 852 (1997).CrossRefGoogle Scholar
Calvert, C.R., Belshaw, L., Duffy, M.J., Kelly, O., King, R.B., Smyth, A.G., Kelly, T.J., Costello, J.T., Timson, D.J., Bryan, W.A., Kierspel, T., Rice, P., Turcu, I.C.E., Cacho, C.M., Springate, E., Williams, I.D., Greenwood, J.B., Phys. Chem. Chem. Phys. 14, 6289 (2012).CrossRefGoogle Scholar
Huang, Z., Ossenbrüggen, T., Rubinsky, I., Schust, M., Horke, D.A., Küpper, J., Anal. Chem. 90, 3920 (2018).CrossRefGoogle Scholar
Zinovev, A.V., Moore, J.F., Pellin, M.J., Veryovkin, I.V., 2007 Quantum Electronics and Laser Science Conference (Baltimore, 2007).Google Scholar
Vadillo, J.M., Fernández Romero, J.M., Rodríguez, C., Laserna, J.J., Surf. Interface Anal. 27, 1009 (1999).3.0.CO;2-2>CrossRefGoogle Scholar
Borton, D.J., Amundson, L.M., Hurt, M.R., Dow, A., Madden, J.T., Simpson, G.J., Kenttämaa, H.I., Anal. Chem. 85, 5720 (2013).CrossRefGoogle Scholar
Jarrell, T.M., Owen, B.C., Riedeman, J.S., Prentice, B.M., Pulliam, C.J., Max, J., Kenttämaa, H.I., J. Am. Soc. Mass Spectrom. 28, 1091 (2017).CrossRefGoogle Scholar
Jin, Z., Daiya, S., Kenttämaa, H.I., Int. J. Mass Spectrom. 301, 234 (2011).CrossRefGoogle Scholar
Pinkston, D.S., Duan, P., Gallardo, V.A., Habicht, S.C., Tan, X., Qian, K., Gray, M., Müllen, K., Kenttämaa, H.I., Energy Fuels 23, 5564 (2009).CrossRefGoogle Scholar
Habicht, S.C., Amundson, L.M., Duan, P., Vinueza, N.R., Kenttämaa, H.I., Anal. Chem. 82, 608 (2010).CrossRefGoogle Scholar
Jia, L., Weng, J., Zhou, Z., Qi, F., Guo, W., Zhao, L., Chen, J., Rev. Sci. Instrum. 83, 026105 (2012).CrossRefGoogle Scholar
Banerjee, S., Mazumdar, S., Int. J. Anal. Chem. 2012, 282574 (2012).CrossRefGoogle Scholar
Cheng, S.-C., Cheng, T.-L., Chang, H.-C., Shiea, J., Anal. Chem. 81, 868 (2009).CrossRefGoogle Scholar
Gao, J., Borton, D.J., Owen, B.C., Jin, Z., Hurt, M., Amundson, L.M., Madden, J.T., Qian, K., Kenttämaa, H.I., J. Am. Soc. Mass Spectrom. 22, 531 (2011).CrossRefGoogle Scholar
Nyadong, L., Quinn, J.P., Hsu, C.S., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Anal. Chem. 84, 7131 (2012).CrossRefGoogle Scholar
Raffaelli, A., Saba, A., Mass Spectrom. Rev. 22, 318 (2003).CrossRefGoogle Scholar
Benham, K., Hodyss, R., Fernández, F.M., Orlando, T.M., J. Am. Soc. Mass Spectrom. 27, 1805 (2016).CrossRefGoogle Scholar
Herod, A.A., Rapid Commun. Mass Spectrom. 24, 2507 (2010).CrossRefGoogle Scholar
Hortal, A.R., Martínez-Haya, B., Lobato, M.D., Pedrosa, J.M., Lago, S., J. Mass Spectrom. 41, 960 (2006).CrossRefGoogle Scholar
Rodgers, R.P., McKenna, A.M., Anal. Chem. 83, 4665 (2011).CrossRefGoogle Scholar
Porter, D.J., Mayer, P.M., Fingas, M., Energy Fuels 18, 987 (2004).CrossRefGoogle Scholar
Marshall, A.G., Rodgers, R.P., Acc. Chem. Res. 37, 53 (2004).CrossRefGoogle Scholar
Hughey, C.A., Rodgers, R.P., Marshall, A.G., Anal. Chem. 74, 4145 (2002).CrossRefGoogle Scholar
Crawford, K.E., Campbell, L.J., Fiddler, M.N., Duan, P., Qian, K., Gorbaty, M.L., Kenttämaa, H.I., Anal. Chem. 77, 7916 (2005).CrossRefGoogle Scholar
Qian, K., Dechert, G.J., Anal. Chem. 74, 3977 (2002).CrossRefGoogle Scholar
Gross, J.H., Mass Spectrometry: A Textbook, 2nd ed. (Springer, Heidelberg, Germany, 2004).CrossRefGoogle Scholar
Klesper, G., Röllgen, F.W., J. Mass Spectrom. 31, 383 (1996).3.0.CO;2-1>CrossRefGoogle Scholar
Jin, C., Viidanoja, J., Li, M., Zhang, Y., Ikonen, E., Root, A., Romanczyk, M., Manheim, J., Dziekonski, E., Kenttämaa, H.I., Anal. Chem. 88, 10592 (2016).CrossRefGoogle Scholar
Briker, Y., Ring, Z., Iacchelli, A., McLean, N., Rahimi, P.M., Fairbridge, C., Malhotra, R., Coggiola, M.A., Young, S.E., Energy Fuels 15, 23 (2001).CrossRefGoogle Scholar
Briker, Y., Ring, Z., Iacchelli, A., McLean, N., Fairbridge, C., Malhotra, R., Coggiola, M.A., Young, S.E., Energy Fuels 15, 996 (2001).CrossRefGoogle Scholar
Duan, P., Qian, K., Habicht, S.C., Pinkston, D.S., Fu, M., Kenttämaa, H.I., Anal. Chem. 80, 1847 (2008).CrossRefGoogle Scholar
Campbell, J.L., Crawford, K.E., Kenttämaa, H.I., Anal. Chem. 76, 959 (2004).CrossRefGoogle Scholar
Duan, P., Fu, M., Pinkston, D.S., Habicht, S.C., Kenttämaa, H.I., J. Am. Chem. Soc. 129, 9266 (2007).CrossRefGoogle Scholar
Campbell, J.L., Fiddler, M.N., Crawford, K.E., Gqamana, P.P., Kenttämaa, H.I., Anal. Chem. 77, 4020 (2005).CrossRefGoogle Scholar
Hsu, C.S., Prepr. Symp. Am. Chem. Soc. Div. Fuel Chem. 56, 421 (2011).Google Scholar
Demarais, N.J., Yang, Z., Snow, T.P., Bierbaum, V.M., Astrophys. J. 784, 25/1 (2014).CrossRefGoogle Scholar
Chen, J., Jia, L., Zhao, L., Lu, X., Guo, W., Weng, J., Qi, F., Energy Fuels 27, 2010 (2013).CrossRefGoogle Scholar
Petzold, C.J., Ramírez-Arizmendi, L.E., Heidbrink, J.L., Pérez, J., Kenttämaa, H.I., J. Am. Soc. Mass Spectrom. 13, 192 (2002).CrossRefGoogle Scholar
Somuramasami, J., Kenttämaa, H.I., J. Am. Soc. Mass Spectrom. 18, 525 (2007).CrossRefGoogle Scholar
Liu, J., Petzold, C.J., Ramirez-Arizmendi, L.E., Perez, J., Kenttämaa, H.I., J. Am. Chem. Soc. 127, 12758 (2005).CrossRefGoogle Scholar
Li, S., Fu, M., Habicht, S.C., Pates, G.O., Nash, J.J., Kenttämaa, H.I., J. Org. Chem. 74, 7724 (2009).CrossRefGoogle Scholar
Hazelwood, C., Davies, M.J., Gilbert, B.C., Packer, J.E., J. Chem. Soc. Perkin Trans. 2, 2167 (1995).CrossRefGoogle Scholar
Hawkins, C.L., Davies, M.J., J. Chem. Soc. Perkins Trans. 2, 1937 (1998).CrossRefGoogle Scholar
Headlam, H.A., Mortimer, A., Easton, C.J., Davies, M.J., Chem. Res. Toxicol. 13, 1087 (2000).CrossRefGoogle Scholar
Yang, L., Nash, J.J., Yurkovich, M.J., Jin, Z., Vinueza, N.R., Kenttämaa, H.I., Org. Lett. 10, 1889 (2008).CrossRefGoogle Scholar
Bald, I., Dąbkowska, I., Illenberger, E., Angew. Chem. Int. Ed. Engl. 120, 8646 (2008).CrossRefGoogle Scholar
Remacle, F., Levine, R.D., Proc. Natl. Acad. Sci. U.S.A. 103, 6793 (2006).CrossRefGoogle Scholar
Calvert, C.R., Kelly, O., Duffy, M.J., Belshaw, L., King, R.B., Williams, I.D., Greenwood, J.B., J. Phys. Conf. Ser. 388, 012032 (2012).CrossRefGoogle Scholar
Peng, W.-P., Yang, Y.-C., Kang, M.-W., Tzeng, Y.-K., Nie, Z., Chang, H.-C., Chang, W., Chen, C.-H., Angew. Chem. Int. Ed. Engl. 45, 1423 (2006).CrossRefGoogle Scholar
Peng, W.-P., Lin, H.-C., Lin, H.-H., Chu, M., Yu, A.L., Chang, H.-C., Chen, C.-H., Angew. Chem. Int. Ed. Engl. 119, 3939 (2007).CrossRefGoogle Scholar
Peng, W.-P., Yang, Y.-C., Lin, C.-W., Chang, H.-C., Anal. Chem. 77, 7084 (2005).CrossRefGoogle Scholar
Kahler, H., Lloyd, B.J., Science 114, 34 (1951).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laser-induced acoustic desorption
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Laser-induced acoustic desorption
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Laser-induced acoustic desorption
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *