Skip to main content Accessibility help
×
Home

Article contents

ITO nanowires and nanoparticles for transparent films

Published online by Cambridge University Press:  20 October 2011

Eric N. Dattoli
Affiliation:
Gaithersburg, MD 20899, USA; eric.dattoli@nist.gov
Wei Lu
Affiliation:
Ann Arbor, MI 48109, USA; wluee@eecs.umich.edu
Corresponding
Get access

Abstract

Indium tin oxide (ITO) is the most widely used transparent electrode material today. Although the material possesses a superior combination of high optical transparency and large conductance, conventional ITO thin-film deposition techniques are incompatible with the mechanical and thermal requirements associated with the emerging class of flexible electronic devices. To address this issue, the status of the development of ITO nanostructures such as nanowires and nanoparticles will be reviewed in this article. Two major achievements to be discussed are the growth of vertically oriented arrays of ITO nanowires and the synthesis of small diameter, monodisperse ITO nanoparticles. In addition, solutions of these materials can be deposited utilizing existing printed electronics manufacturing techniques to realize highly transparent, conductive, and flexible ITO thin films on a diverse range of substrates, including plastics. These nanomaterial-based approaches could one day help realize low-cost, flexible electronics based on transparent thin-film electrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Baraton, M.-I., MRS Proc. 1209, 1209 (2009).CrossRefGoogle Scholar
2.Jeong, J.-A., Lee, J., Kim, H., Kim, H.-K., Na, S.-I., Sol. Energy Mater. Sol. Cells 94, 1840 (2010).CrossRefGoogle Scholar
3.O’Dwyer, C., Szachowicz, M., Visimberga, G., Lavayen, V., Newcomb, S.B., Torres, C.M.S., Nat. Nanotechnol. 4, 239 (2009).CrossRefGoogle Scholar
4.Edwards, P.P., Porch, A., Jones, M.O., Morgan, D.V., Perks, R.M., Dalton Trans. 2995 (2004).CrossRefGoogle Scholar
5.Kim, H., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B., Appl. Phys. Lett. 74, 3444 (1999).CrossRefGoogle Scholar
6.Gordon, R.G., MRS Bull. 25, 52 (2000).CrossRefGoogle Scholar
7.Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramanian, V., Korvink, J.G., Schubert, U.S., J. Mater. Chem. 20, 8446 (2010).CrossRefGoogle Scholar
8.Tahar, R.B.H., Ban, T., Ohya, Y., Takahashi, Y., J. Appl. Phys. 83, 2631 (1998).CrossRefGoogle Scholar
9.Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., Newton, R.R., Appl. Phys. Lett. 76, 1425 (2000).CrossRefGoogle Scholar
10.Jorgenson, J.D., U.S. Geol. Surv. 80 (2004).Google Scholar
11.Hong, H., Jung, H., Hong, S.-J., Res. Chem. Intermed. 36, 761 (2010).CrossRefGoogle Scholar
12.Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E., Adv. Mater. 22, 673 (2010).CrossRefGoogle Scholar
13.Peng, C.Q., Thio, Y.S., Gerhardt, R.A., Nanotechnology 19, 505603 (2008).CrossRefGoogle Scholar
14.Königer, T., Rechtenwald, T., Al-Naimi, I., Frick, T., Schmidt, M., Münstedt, H., J. Coat. Technol. Res. 7, 261 (2010).CrossRefGoogle Scholar
15.Baca, A.J., Ahn, J.-H., Sun, Y., Meitl, M.A., Menard, E., Kim, H.-S., Choi, W.M., Kim, D.-H., Huang, Y., Rogers, J.A., Angew. Chem. Int. Ed. 47, 5524 (2008).CrossRefGoogle Scholar
16.Sasaki, T., Endo, Y., Nakaya, M., Kanie, K., Nagatomi, A., Tanoue, K., Nakamura, R., Muramatsu, A., J. Mater. Chem. 20, 8153 (2010).CrossRefGoogle Scholar
17.Sung-Jei, H., Yong-Hoon, K., Jeong-In, H., IEEE Trans. Nanotechnol. 7, 172 (2008).CrossRefGoogle Scholar
18.Ramanan, S.R., Thin Solid Films 389, 207 (2001).CrossRefGoogle Scholar
19.Itoh, Y., Abdullah, M., Okuyama, K., J. Mater. Res. 19, 1077 (2004).CrossRefGoogle Scholar
20.Puetz, J., Al-Dahoudi, N., Aegerter, M.A., Adv. Eng. Mater. 6, 733 (2004).CrossRefGoogle Scholar
21.Reindl, A., Mahajeri, M., Hanft, J., Peukert, W., Thin Solid Films 517, 1624 (2009).CrossRefGoogle Scholar
22.Al-Dahoudi, N., Bisht, H., Göbbert, C., Krajewski, T., Aegerter, M.A., Thin Solid Films 392, 299 (2001).CrossRefGoogle Scholar
23.Maksimenko, I., Gross, M., Königer, T., Münstedt, H., Wellmann, P.J., Thin Solid Films 518, 2910 (2010).CrossRefGoogle Scholar
24.Ederth, J., Hultåker, A., Niklasson, G.A., Heszler, P., van Doorn, A.R., Jongerius, M.J., Burgard, D., Granqvist, C.G., Appl. Phys. A 81, 1363 (2005).CrossRefGoogle Scholar
25.Mahajeri, M., Voigt, M., Klupp Taylor, R.N., Reindl, A., Peukert, W., Thin Solid Films 518, 3373 (2010).CrossRefGoogle Scholar
26.Ederth, J., Johnsson, P., Niklasson, G.A., Hoel, A., Hultaker, A., Heszler, P., Granqvist, C.G., van Doorn, A.R., Jongerius, M.J., Burgard, D., Phys. Rev. B 68, 155410 (2003).CrossRefGoogle Scholar
27.Birnstock, J., Blassing, J., Hunze, A., Scheffel, M., Stossel, M., Heuser, K., Wittmann, G., Worle, J., Winnacker, A., Appl. Phys. Lett. 78, 3905 (2001).CrossRefGoogle Scholar
28.Choi, S.-I., Nam, K.M., Park, B.K., Seo, W.S., Park, J.T., Chem. Mater. 20, 2609 (2008).CrossRefGoogle Scholar
29.Gilstrap, R.A., Capozzi, C.J., Carson, C.G., Gerhardt, R.A., Summers, C.J., Adv. Mater. 20, 4163 (2008).Google Scholar
30.Kim, B.-C., Lee, J.-H., Kim, J.-J., Ikegami, T., Mater. Lett. 52, 114 (2002).CrossRefGoogle Scholar
31.Maksimenko, I., Wellmann, P., Thin Solid Films (2011), In press.Google Scholar
32.Goebbert, C., Nonninger, R., Aegerter, M.A., Schmidt, H., Thin Solid Films 351, 79 (1999).CrossRefGoogle Scholar
33.Takeda, Y., Kato, N., Higuchi, K., Takeichi, A., Motohiro, T., Fukumoto, S., Sano, T., Toyoda, T., Sol. Energy Mater. Sol. Cells 93, 808 (2009).CrossRefGoogle Scholar
34.Puetz, J., Aegerter, M.A., Thin Solid Films 516, 4495 (2008).CrossRefGoogle Scholar
35.Peng, C., Thio, Y.S., Gerhardt, R.A., J. Phys. Chem. C 114, 9685 (2010).CrossRefGoogle Scholar
36.Jeong, J.-A., Kim, J., Kim, H.-K., Sol. Energy Mater. Sol. Cells (2011), In press.Google Scholar
37.Jeong, J.-A., Kim, H.-K., Curr. Appl. Phys. 10, e105 (2010).CrossRefGoogle Scholar
38.Aegerter, M.A., Puetz, J., Gasparro, G., Al-Dahoudi, N., Opt. Mater. 26, 155 (2004).CrossRefGoogle Scholar
39.Heusing, S., de Oliveira, P.W., Kraker, E., Haase, A., Palfinger, C., Veith, M., Thin Solid Films 518, 1164 (2009).CrossRefGoogle Scholar
40.Lindström, H., Holmberg, A., Magnusson, E., Lindquist, S.-E., Malmqvist, L., Hagfeldt, A., Nano Lett. 1, 97 (2001).CrossRefGoogle Scholar
41.Bühler, G., Thölmann, D., Feldmann, C., Adv. Mater. 19, 2224 (2007).CrossRefGoogle Scholar
42.Halme, J., Saarinen, J., Lund, P., Sol. Energy Mater. Sol. Cells 90, 887 (2006).CrossRefGoogle Scholar
43.Kim, H., Gilmore, C.M., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B., J. Appl. Phys. 86, 6451 (1999).CrossRefGoogle Scholar
44.Greer, J.R., Street, R.A., Acta Mater. 55, 6345 (2007).CrossRefGoogle Scholar
45.Savu, R., Joanni, E., Scripta Mater. 55, 979 (2006).CrossRefGoogle Scholar
46.Wan, Q., Dattoli, E.N., Fung, W.Y., Guo, W., Chen, Y., Pan, X., Lu, W., Nano Lett. 6, 2909 (2006).CrossRefGoogle Scholar
47.Lu, W., Lieber, C.M., J. Phys. D: Appl. Phys. 39, R387 (2006).CrossRefGoogle Scholar
48.Munir, M.M., Iskandar, F., Yun, K.M., Okuyama, K., Abdullah, M., Nanotechnology 19, 145603 (2008).CrossRefGoogle Scholar
49.Wang, H.-W., Ting, C.-F., Hung, M.-K., Chiou, C.-H., Liu, Y.-L., Liu, Z., Ratinac, K.R., Ringer, S.P., Nanotechnology 20, 055601 (2009).CrossRefGoogle Scholar
50.Kovtyukhova, N.I., Mallouk, T.E., Nanoscale (2011), In press.Google Scholar
51.Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M., Nature 430, 61 (2004).CrossRefGoogle Scholar
52.Gao, J., Chen, R., Li, D.H., Jiang, L., Ye, J.C., Ma, X.C., Chen, X.D., Xiong, Q.H., Sun, H.D., Wu, T., Nanotechnology 22, 195706 (2011).CrossRefGoogle ScholarPubMed
53.Hochbaum, A.I., Yang, P., Chem. Rev. 110, 527 (2009).CrossRefGoogle Scholar
54.Wan, Q., Wei, M., Zhi, D., MacManus-Driscoll, J.L., Blamire, M.G., Adv. Mater. 18, 234 (2006).CrossRefGoogle Scholar
55.Kim, J.K., Chhajed, S., Schubert, M.F., Schubert, E.F., Fischer, A.J., Crawford, M.H., Cho, J., Kim, H., Sone, C., Adv. Mater. 20, 801 (2008).CrossRefGoogle Scholar
56.Gevaux, D., Nat. Photonics 1, 186 (2007).CrossRefGoogle Scholar
57.Huang, Y., Duan, X., Wei, Q., Lieber, C.M., Science 291, 630 (2001).CrossRefGoogle Scholar
58.Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E., Appl. Phys. Lett. 77, 1399 (2000).CrossRefGoogle Scholar
59.Shim, B.S., Podsiadlo, P., Lilly, D.G., Agarwal, A., Lee, J., Tang, Z., Ho, S., Ingle, P., Paterson, D., Lu, W., Kotov, N.A., Nano Lett. 7, 3266 (2007).CrossRefGoogle Scholar
60.Noh, Y.-Y., Cheng, X., Sirringhaus, H., Sohn, J.I., Welland, M.E., Kang, D.J., Appl. Phys. Lett. 91, 043109 (2007).CrossRefGoogle Scholar
61.Whang, D., Jin, S., Wu, Y., Lieber, C.M., Nano Lett. 3, 1255 (2003).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 47
Total number of PDF views: 273 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-mhpm4 Total loading time: 0.316 Render date: 2021-01-15T21:32:21.021Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 21:00:44 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ITO nanowires and nanoparticles for transparent films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ITO nanowires and nanoparticles for transparent films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ITO nanowires and nanoparticles for transparent films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *