Skip to main content Accessibility help
×
Home

Article contents

Frontiers in hybrid and interfacial materials chemistry research

Published online by Cambridge University Press:  10 November 2020

Beth S. Guiton
Affiliation:
University of Kentucky, USA; beth.guiton@uky.edu
Morgan Stefik
Affiliation:
University of South Carolina, USA; morgan@stefikgroup.com
Veronica Augustyn
Affiliation:
North Carolina State University, USA; vaugust@ncsu.edu
Sarbajit Banerjee
Affiliation:
Texas A&M University, USA; banerjee@chem.tamu.edu
Christopher J. Bardeen
Affiliation:
University of California, Riverside, USA; christopher.bardeen@ucr.edu
Bart M. Bartlett
Affiliation:
University of Michigan, USA; bartmb@umich.edu
Jun Li
Affiliation:
Kansas State University, USA; junli@ksu.edu
Vilmalí López-Mejías
Affiliation:
University of Puerto Rico, USA; vilmali.lopez@upr.edu
Leonard R. MacGillivray
Affiliation:
The University of Iowa, USA; len-macgillivray@uiowa.edu
Amanda Morris
Affiliation:
Virginia Polytechnic Institute and State University, USA; ajmorris@vt.edu
Efrain E. Rodriguez
Affiliation:
University of Maryland, College Park, USA; efrain@umd.edu
Anna Cristina S. Samia
Affiliation:
Case Western Reserve University, USA; axs232@case.edu
Haoran Sun
Affiliation:
University of South Dakota, USA; Haoran.Sun@usd.edu
Peter Sutter
Affiliation:
University of Nebraska–Lincoln, USA; psutter@unl.edu
Daniel R. Talham
Affiliation:
University of Florida, USA; talham@chem.ufl.edu
Get access

Abstract

Through diversity of composition, sequence, and interfacial structure, hybrid materials greatly expand the palette of materials available to access novel functionality. The NSF Division of Materials Research recently supported a workshop (October 17–18, 2019) aiming to (1) identify fundamental questions and potential solutions common to multiple disciplines within the hybrid materials community; (2) initiate interfield collaborations between hybrid materials researchers; and (3) raise awareness in the wider community about experimental toolsets, simulation capabilities, and shared facilities that can accelerate this research. This article reports on the outcomes of the workshop as a basis for cross-community discussion. The interdisciplinary challenges and opportunities are presented, and followed with a discussion of current areas of progress in subdisciplines including hybrid synthesis, functional surfaces, and functional interfaces.

Type
Technical Feature
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Greene, L., Lubensky, T., Tirrell, M., Chaikin, P., Ding, H., Faber, K., Hammond, P., Heckle, C., Hemker, K., Heremans, J., Committee on Frontiers of Materials Research: A Decadal Survey (National Academies Press, Washington, DC, 2019).CrossRefGoogle Scholar
Fleer, N.A., Thomas, M.P., Andrews, J.L., Waetzig, G.R., Gonzalez, O., Liu, G.W., Guiton, B.S., Banerjee, S., Nanoscale 11, 21354 (2019).Google Scholar
Parija, A., Waetzig, G.R., Andrews, J.L., Banerjee, S., J. Phys. Chem. C 122, 25709 (2018).CrossRefGoogle Scholar
Lantz, K.A., Clamp, N.B., van den Bergh, W., Sarkar, A., Stefik, M., Small 15 e1900393 (2019).10.1002/smll.201900393CrossRefGoogle Scholar
Lokupitiya, H.N., Jones, A., Reid, B., Guldin, S., Stefik, M., Chem. Mater. 28, 1653 (2016).10.1021/acs.chemmater.5b04407CrossRefGoogle Scholar
Sarkar, A., Evans, L., Stefik, M., Langmuir 34, 5738 (2018).Google Scholar
Sarkar, A., Stefik, M., J. Mater. Chem. A 5, 11840 (2017).10.1039/C7TA01034FCrossRefGoogle Scholar
Schaak, R.E., Mallouk, T.E., Chem. Mater. 14, 1455 (2002).Google Scholar
Siperstein, F.R., Gubbins, K.E., Langmuir 19, 2049 (2003).CrossRefGoogle Scholar
Gong, C., Zhang, X., Science 363 (2019), http://dx.doi.org/10.1126/science.aav4450.Google ScholarPubMed
Novoselov, K.S., Mishchenko, A., Carvalho, A., Neto, A.H. Castro, Science 353, aac9439 (2016).Google Scholar
Keimer, B., Moore, J.E., Nat. Phys. 13, 1045 (2017).Google Scholar
Lin, Z., McCreary, A., Briggs, N., Subramanian, S., Zhang, K., Sun, Y., Li, X., Borys, N.J., Yuan, H., 2D Mater. 3, 042001 (2016).Google Scholar
Park, B.J., Brugarolas, T., Lee, D., Soft Matter 7, 6413 (2011).CrossRefGoogle Scholar
Lee, R.-S., Huang, Y.-T., Polym. J. 42, 304 (2010).CrossRefGoogle Scholar
Yao, C.-W., Alvarado, J.L., Marsh, C.P., Jones, B.G., Collins, M.K., Appl. Surf. Sci. 290, 59 (2014).Google Scholar
Liljas, A., Liljas, L., Piskur, J., Nissen, P., Kjeldgaard, M., Textbook of Structural Biology (World Scientific, Singapore, 2009).10.1142/6620CrossRefGoogle Scholar
Ramasubramaniam, A., Selhorst, R., Alon, H., Barnes, M.D., Emrick, T., Naveh, D., J. Mater. Chem. C 5, 11158 (2017).CrossRefGoogle Scholar
Xu, W., Gracias, D.H., ACS Nano 13, 4883 (2019).CrossRefGoogle Scholar
Chen, L.-Q., Chen, L.-D., Kalinin, S.V., Klimeck, G., Kumar, S.K., Neugebauer, J., Terasaki, I., NPJ Comput. Mater. 1 (2015),Google Scholar
Alameda, L.T., Lord, R.W., Barr, J.A., Moradifar, P., Metzger, Z.P., Steimle, B.C., Holder, C.F., Alem, N., Sinnott, S.B., Schaak, R.E., J. Am. Chem. Soc. 141, 10852 (2019).Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).Google Scholar
Tennyson, E.M., Howard, J.M., Leite, M.S., ACS Energy Lett. 2, 1825 (2017).Google Scholar
Wang, X., Weng, Q., Yang, Y., Bando, Y., Golberg, D., Chem. Soc. Rev. 45, 4042 (2016).Google Scholar
Halbertal, D., Cuppens, J., Shalom, M.B., Embon, L., Shadmi, N., Anahory, Y., Naren, H.R., Sarkar, J., Uri, A., Ronen, Y., Myasoedov, Y., Levitov, L.S., Joselevich, E., Geim, A.K., Zeldov, E., Nature 539, 407 (2016).CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T., Michael, J., MRS Bull. 32, 400 (2007).10.1557/mrs2007.63CrossRefGoogle Scholar
Leijten, Z.J.W.A., Keizer, A.D.A., de With, G., Friedrich, H., J. Phys. Chem. C Nanomater. Interfaces, 121, 10552 (2017).CrossRefGoogle Scholar
Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.L., Joubert, L.M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Science 358, 506 (2017).CrossRefGoogle Scholar
Williams, R.E.A., McComb, D.W., Subramaniam, S., MRS Bull. 44, 929 (2019).Google Scholar
Liao, H.G., Zheng, H., H. Annu. Rev. Phys. Chem. 67, 719 (2016).10.1146/annurev-physchem-040215-112501CrossRefGoogle Scholar
Kourkoutis, L.F., Plitzko, J.M., Baumeister, W., Annu. Rev. Mater. Res. 42, 33 (2012).CrossRefGoogle Scholar
Burks, R., Deards, K.D., DeFrain, E., J. Chem. Educ. 94, 1918 (2017).10.1021/acs.jchemed.7b00070CrossRefGoogle Scholar
Kondinski, A., Parac-Vogt, T.N., J. Chem. Educ. 96, 601 (2019).CrossRefGoogle Scholar
Houben, S., Quintens, G., Pitet, L.M., J. Chem. Educ. (2020), http://dx.doi.org/10.1021/acs.jchemed.0c00190.Google Scholar
Rood, J.A., Henderson, K.W., J. Chem. Educ. 90, 379 (2013).CrossRefGoogle Scholar
Corpus-Mendoza, A.N., Moreno-Romero, P.M., Hu, H., J. Chem. Educ. 96, 974 (2019).Google Scholar
Ting, J.M., Ricarte, R.G., Schneiderman, D.K., Saba, S.A., Jiang, Y., Hillmyer, M.A., Bates, F.S., Reineke, T.M., Macosko, C.W., Lodge, T.P., J. Chem. Educ. 94, 1629 (2017).10.1021/acs.jchemed.6b00767CrossRefGoogle Scholar
Rodenbough, P.P., Vanti, W.B., Chan, S.-W., J. Chem. Educ. 92, 1960 (2015).CrossRefGoogle Scholar
Kickelbick, G., Hybrid Materials (Wiley, Hoboken, NJ, 2019).Google Scholar
Chauhan, B.P.S., Novel Nanoscale Hybrid Materials (Wiley, Hoboken, NJ, 2018).Google Scholar
Gomez-Romero, P., Sanchez, C.. Functional Hybrid Materials (Wiley, Hoboken, NJ, 2004).Google Scholar
Yan, B., Photofunctional Rare Earth Hybrid Materials (Springer, New York, 2017).CrossRefGoogle Scholar
Cook, T.R., Zheng, Y.R., Stang, P.J., Chem. Rev. 113, 734 (2013).Google Scholar
Faul, C.F.J., Antonietti, M., Adv. Mater. 15, 673 (2003).CrossRefGoogle Scholar
Katz, E., Willner, I., Angew. Chem. Int. Ed. 43, 6042 (2004).Google Scholar
Mann, S., Nat. Mater. 8, 781 (2009).Google Scholar
Cui, Y., Li, B., He, H., Zhou, W., Chen, B., Qian, G., Acc. Chem. Res. 49, 483 (2016).Google Scholar
Putta, A., Mottishaw, J.D., Wang, Z., Sun, H., Cryst. Growth Des. 14, 350 (2014).10.1021/cg401637aCrossRefGoogle Scholar
Sun, H., Tottempudi, U.K., Mottishaw, J.D., Basa, P.N., Putta, A., Sykes, A.G., Cryst. Growth Des. 12, 5655 (2012).10.1021/cg301151uCrossRefGoogle Scholar
Surbella, R.G., Ducati, L.C., Pellegrini, K.L., McNamara, B.K., Autschbach, J., Schwantes, J.M., Cahill, C.L., J. Am. Chem. Soc. 139, 10843 (2017).10.1021/jacs.7b05689CrossRefGoogle Scholar
Mei, L., Wang, C.-Z., Wang, L., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q., Cryst. Growth Des. 15, 1395 (2015).10.1021/cg501783dCrossRefGoogle Scholar
Boterashvili, M., Lahav, M., Shankar, S., Facchetti, A., van der Boom, M.E., J. Am. Chem. Soc. 136, 11926 (2014).Google Scholar
Wang, C., He, Q., Halim, U., Liu, Y., Zhu, E., Lin, Z., Xiao, H., Duan, X., Feng, Z., Cheng, R., Weiss, N.O., Ye, G., Huang, Y.C., Wu, H., Cheng, H.C., Shakir, I., Liao, L., Chen, X., Goddard, W.A., Huang, Y., Duan, X., Nature 555, 231 (2018).10.1038/nature25774CrossRefGoogle Scholar
Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Llabrés, F.X., Xamena, I., Gascon, J., Nat. Mater. 14, 48 (2015).CrossRefGoogle Scholar
Politzer, P., Murray, J.S., Concha, M.C., J. Mol. Model. 13, 643 (2007).10.1007/s00894-007-0176-9CrossRefGoogle Scholar
Gattuso, G., Liantonio, R., Metrangolo, P., Meyer, F., Pappalardo, A., Parisi, M.F., Pilati, T., Pisagatti, I., Resnati, G., Supramol. Chem. 18, 235 (2006).CrossRefGoogle Scholar
Fox, D.B., Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G., J. Fluor. Chem. 125, 271 (2004).Google Scholar
Marsh, Z.M., Blom, D.A., Stefik, M., Adv. Mater. Interfaces 7, 1901691 (2020).Google Scholar
Chávez, F.A., Quiñonez, P.A., Roberson, D.A., J. Thermoplast. Compos. Mater. 089270571986415 (2019).10.1177/0892705719864150CrossRefGoogle Scholar
Yu, R., Yang, X., Zhang, Y., Zhao, X., Wu, X., Zhao, T., Zhao, Y., Huang, W., ACS Appl. Mater. Interfaces 9, 1820 (2017).Google Scholar
Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C.M., Greer, J.R., Nat. Commun. 9, 593 (2018).Google Scholar
Biswas, S., Brinkmann, F., Hirtz, M., Fuchs, H., Nanofabrication 2, 19 (2015).CrossRefGoogle Scholar
Zhang, M., Li, L., Lin, Q., Tang, M., Wu, Y., Ke, C., J. Am. Chem. Soc. 141, 5154 (2019).10.1021/jacs.9b01561CrossRefGoogle Scholar
Situ, S.F., Cao, J., Chen, C., Abenojar, E.C., Maia, J.M., Samia, A.C.S., Macromol. Mater. Eng. 301, 1525 (2016).Google Scholar
Cai, X., Luo, Y., Liu, B., Cheng, H.-M., Chem. Soc. Rev. 47, 6224 (2018).CrossRefGoogle Scholar
Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T., Chem. Soc. Rev. 38, 1450 (2009).CrossRefGoogle Scholar
Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T., Chem. Rev. 112, 1105 (2012).Google Scholar
Murray, L.J., Dincă, M., Long, J.R., Chem. Soc. Rev. 38, 1294 (2009).CrossRefGoogle Scholar
Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., Long, J.R., Chem. Rev. 112, 724 (2012).10.1021/cr2003272CrossRefGoogle Scholar
Cohen, S.M., Chem. Rev. 112, 970 (2012).CrossRefGoogle Scholar
Meek, S.T., Greathouse, J.A., Allendorf, M.D., Adv. Mater. 2, 249 (2011).CrossRefGoogle Scholar
Matzger, A.J., Suresh, K., López-Mejías, V., Roy, S., Camacho, D.F., Synlett (2020), http://dx.doi.org/10.1055/s-0040-1707139.Google Scholar
Yuan, S., Huang, L., Huang, Z., Sun, D., Qin, J.S., Feng, L., Li, J., Zou, X., Cagin, T., Zhou, H.C., J. Am. Chem. Soc. 142, 4732 (2020).Google Scholar
Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J., Nature 423, 705 (2003).CrossRefGoogle Scholar
Zhou, H.C., Kitagawa, S., Chem. Soc. Rev. 43, 5415 (2014).Google Scholar
White, K.F., Abrahams, B.F., Babarao, R., Dharma, A.D., Hudson, T.A., Maynard-Casely, H.E., Robson, R., Chemistry 21, 18057 (2015).Google Scholar
Nouar, F., Eubank, J.F., Bousquet, T., Wojtas, L., Zaworotko, M.J., Eddaoudi, M., J. Am. Chem. Soc. 130, 1833 (2008).Google Scholar
Kandiah, M., Nilsen, M.H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E.A., Bonino, F., Lillerud, K.P., Chem. Mater. 22, 6632 (2010).10.1021/cm102601vCrossRefGoogle Scholar
Férey, G. Chem. Soc. Rev. 37, 191 (2008).CrossRefGoogle Scholar
Chiong, J.A., Zhu, J., Bailey, J.B., Kalaj, M., Subramanian, R.H., Xu, W., Cohen, S.M., Tezcan, F.A., J. Am. Chem. Soc. 142, 6907 (2020).Google Scholar
Haldar, R., Maji, T.K., CrystEngComm 15, 9276 (2013).10.1039/c3ce41438hCrossRefGoogle Scholar
Zhang, W., Freitag, K., Wannapaiboon, S., Schneider, C., Epp, K., Kieslich, G., Fischer, R.A., Inorg. Chem. 55, 12492 (2016).Google Scholar
Navarro, J.A., Barea, E., Salas, J.M., Masciocchi, N., Galli, S., Sironi, A., Ania, C.O., Parra, J.B., Inorg. Chem. 45, 2397 (2006).Google Scholar
Ziebel, M.E., Ondry, J.C., Long, J.R., Chem. Sci. 11, 6690 (2020).CrossRefGoogle Scholar
Liu, J., Wöll, C., Chem. Soc. Rev. 46, 5730 (2017).Google Scholar
Shekhah, O., Liu, J., Fischer, R.A., Wöll, C., Chem. Soc. Rev. 40, 1081 (2011).Google Scholar
Solomos, M.A., Claire, F.J., Kempa, T.J., J. Mater. Chem. A 7, 23537 (2019).10.1039/C9TA06534BCrossRefGoogle Scholar
Zhu, J., Usov, P.M., Xu, W., Celis-Salazar, P.J., Lin, S., Kessinger, M.C., Landaverde-Alvarado, C., Cai, M., May, A.M., Slebodnick, C., Zhu, D., Senanayake, S.D., Morris, A.J., J. Am. Chem. Soc. 140, 93 (2018).Google Scholar
Song, Y., Feng, X., Chen, J.S., Brzezinski, C., Xu, Z., Lin, W., J. Am. Chem. Soc. 142, 4872 (2020).CrossRefGoogle Scholar
National Academies of Science, Engineering, and Medicine, Frontiers of Materials Research: A Decadal Survey (National Academies Press, Washington, DC, 2019).Google Scholar
Seo, J., Noh, J.H., Seok, S.I., Acc. Chem. Res. 49, 562 (2016).Google Scholar
Grätzel, M., Acc. Chem. Res. 50, 487 (2017).Google Scholar
Thomas, M.P., Wanninayake, N., De Alwis Goonatilleke, M., Kim, D.Y., Guiton, B.S., Nanoscale 12, 6144 (2020).Google ScholarPubMed
Lai, L., Potts, J.R., Zhan, D., Wang, L., Poh, C.K., Tang, C., Gong, H., Shen, Z., Lin, J., Ruoff, R.S., Energy Environ. Sci. 5, 7936 (2012).CrossRefGoogle Scholar
Wang, X.X., Swihart, M.T., Wu, G., Nat. Catal. 2, 578 (2019).Google Scholar
Li, J., Pandey, G.P., Annu. Rev. Phys. Chem. 66, 331 (2015).CrossRefGoogle Scholar
Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., Simpson, M.L., J. Appl. Phys. 97, 041301 (2005).Google Scholar
Klankowski, S.A., Rojeski, R.A., Cruden, B.A., Liu, J., Wu, J., Li, J., J. Mater. Chem. A 1, 1055 (2013).Google Scholar
Brown, E., Acharya, J., Pandey, G.P., Wu, J., Li, J., Adv. Mater. Interfaces 3, 1600824 (2016).CrossRefGoogle Scholar
Murphin Kumar, P.S., Ponnusamy, V.K., Deepthi, K.R., Kumar, G., Pugazhendhi, A., Abe, H., Thiripuranthagan, S., Pal, U., Krishnan, S.K., J. Mater. Chem. A, 6, 23435 (2018).CrossRefGoogle Scholar
Li, W., Dong, H., Guo, X., Li, N., Li, J., Niu, G., Wang, L., J. Mater. Chem. A 2, 20105 (2014).CrossRefGoogle Scholar
Placido, T., Tognaccini, L., Howes, B.D., Montrone, A., Laquintana, V., Comparelli, R., Curri, M.L., Smulevich, G., Agostiano, A., ACS Omega 3, 4959 (2018).CrossRefGoogle Scholar
Parlak, O., Tiwari, A., Turner, A.P., Tiwari, A., Biosens. Bioelectron. 49, 53 (2013).CrossRefGoogle Scholar
Chen, L., Lu, G., J. Electroanal. Chem. 597, 51 (2006).10.1016/j.jelechem.2006.08.002CrossRefGoogle Scholar
Sutter, P., Huang, Y., Sutter, E., Nano Lett. 14, 4846 (2014).CrossRefGoogle Scholar
Yu, L., Hudak, B.M., Ullah, A., Thomas, M.P., Porter, C.C., Thisera, A., Pham, R.H., De Alwis Goonatilleke, M., Guiton, B.S., Chem. Mater. 32, 639 (2020).Google Scholar
Zhu, C., Liang, S., Song, E., Zhou, Y., Wang, W., Shan, F., Shi, Y., Hao, C., Yin, K., Zhang, T., Liu, J., Zheng, H., Sun, L., Nat. Commun. 9, 421 (2018).CrossRefGoogle Scholar
Sutter, E., Sutter, P., Tkachenko, A.V., Krahne, R., de Graaf, J., Arciniegas, M., Manna, L., Nat. Commun. 7, 11213 (2016).CrossRefGoogle Scholar
Jin, W., Yeh, P.C., Zaki, N., Zhang, D., Sadowski, J.T., Al-Mahboob, A., van der Zande, A.M., Chenet, D.A., Dadap, J.I., Herman, I.P., Sutter, P., Hone, J., Osgood, R.M., Phys. Rev. Lett. 111, 06801 (2013).Google Scholar
Nguyen, P.V., Teutsch, N.C., Wilson, N.P., Kahn, J., Xia, X., Graham, A.J., Kandyba, V., Giampietri, A., Barinov, A., Constantinescu, G.C., Yeung, N., Hine, N.D.M., Xu, X., Cobden, D.H., Wilson, N.R., Nature 572, 220 (2019).CrossRefGoogle Scholar
Sutter, P., Argyropoulos, C., Sutter, E., Nano Lett. 18, 4576 (2018).Google Scholar
Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A.F., Dean, C.R., Science 363, 1059 (2019).Google Scholar
Crane, M.J., Petrone, A., Beck, R.A., Lim, M.B., Zhou, X., Li, X., Sci. Adv. 5, eaau6073 (2019).CrossRefGoogle Scholar
Geim, A.K., Grigorieva, I.V., Nature 499, 419 (2013).10.1038/nature12385CrossRefGoogle Scholar
Sahoo, P.K., Memaran, S., Xin, Y., Balicas, L., Gutiérrez, H.R., Nature 553, 63 (2018).Google Scholar
Xie, S., Tu, L., Han, Y., Huang, L., Kang, K., Lao, K.U., Poddar, P., Park, C., Muller, D.A., DiStasio, R.A., Park, J., Science 359, 1131 (2018).Google Scholar
Kang, K., Lee, K.H., Han, Y., Gao, H., Xie, S., Muller, D.A., Park, J., Nature 550, 229 (2017).CrossRefGoogle Scholar
Sutter, P., Wang, J., Sutter, E., Adv. Mater. 31, e1902166 (2019).Google Scholar
Ryan, B.J., Hanrahan, M.P., Wang, Y., Ramesh, U., Nyamekye, C.K.A., Nelson, R.D., Liu, Z., Huang, C., Whitehead, B., Wang, J., Roling, L.T., Smith, E.A., Rossini, A.J., Panthani, M.G., Chem. Mater. 32, 795 (2020).Google Scholar
Li, D.O., Chu, X.S., Wang, Q.H., Langmuir 35, 5693 (2019).CrossRefGoogle Scholar
Alexeev, E.M., Ruiz-Tijerina, D.A., Danovich, M., Hamer, M.J., Terry, D.J., Nayak, P.K., Ahn, S., Pak, S., Lee, J., Sohn, J.I., Molas, M.R., Koperski, M., Watanabe, K., Taniguchi, T., Novoselov, K.S., Gorbachev, R.V., Shin, H.S., Fal'ko, V.I., Tartakovskii, A.I., Nature 567, 81 (2019).CrossRefGoogle Scholar
Jin, C., Regan, E.C., Yan, A., Utama, M.I.B., Wang, D., Zhao, S., Qin, Y., Yang, S., Zheng, Z., Shi, S., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F., Nature 567, 76 (2019).CrossRefGoogle Scholar
Seyler, K.L., Rivera, P., Yu, H., Wilson, N.P., Ray, E.L., Mandrus, D.G., Yan, J., Yao, W., Xu, X., Nature 567, 66 (2019).Google Scholar
Tran, K., Moody, G., Wu, F., Lu, X., Choi, J., Kim, K., Rai, A., Sanchez, D., Quan, D.J., Singh, A., Embley, J., Zepeda, A., Campbell, M., Autry, T., Taniguchi, T., Watanabe, K., Lu, N., Banerjee, S.K., Silverman, K.L., Kim, S., Tutuc, E., Yang, L., MacDonald, A.H., Li, X., Nature 567, 71 (2019).CrossRefGoogle Scholar
Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Nature 556, 43 (2018).10.1038/nature26160CrossRefGoogle Scholar
Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Kaxiras, E., Ashoori, R.C., Jarillo-Herrero, P., Nature 556, 80 (2018).Google Scholar
Ribeiro-Palau, R., Zhang, C., Watanabe, K., Taniguchi, T., Hone, J., Dean, C.R., Science 361, 690 (2018).Google Scholar
Sutter, P., Wimer, S., Sutter, E., Nature 570, 354 (2019).10.1038/s41586-019-1147-xCrossRefGoogle Scholar
Sutter, P., Ibragimova, R., Komsa, H.-P., Parkinson, B.A., Sutter, E., Nat. Commun. 10, 5528 (2019).Google Scholar
Kim, Y., Cruz, S.S., Lee, K., Alawode, B.O., Choi, C., Song, Y., Johnson, J.M., Heidelberger, C., Kong, W., Choi, S., Qiao, K., Almansouri, I., Fitzgerald, E.A., Kong, J., Kolpak, A.M., Hwang, J., Kim, J., Nature 544, 340 (2017).CrossRefGoogle Scholar
Bae, S.-H., Lu, K., Han, Y., Kim, S., Qiao, K., Choi, C., Nie, Y., Kim, H., Kum, H.S., Chen, P., Kong, W., Kang, B.-S., Kim, C., Lee, J., Baek, Y., Shim, J., Park, J., Joo, M., Muller, D.A., Lee, K., Kim, J., Nat. Nanotechnol. 15, 272 (2020).Google Scholar
Kum, H.S., Lee, H., Kim, S., Lindemann, S., Kong, W., Qiao, K., Chen, P., Irwin, J., Lee, J.H., Xie, S., Subramanian, S., Shim, J., Bae, S.-H., Choi, C., Ranno, L., Seo, S., Lee, S., Bauer, J., Li, H., Lee, K., Robinson, J.A., Ross, C.A., Schlom, D.G., Rzchowski, M.S., Eom, C.-B., Kim, J., Nature 578, 75 (2020).Google Scholar
Yu, L., Han, R., Sang, X., Liu, J., Thomas, M.P., Hudak, B.M., Patel, A., Page, K., Guiton, B.S., ACS Nano 12, 9051 (2018).Google Scholar
Sutter, E., French, J.S., Balgarkashi, A., Tappy, N., Fontcuberta, A., Morral, I., Idrobo, J.C., Sutter, P., Nano Lett. 19, 8903 (2019).CrossRefGoogle Scholar
Kelso, M.V., Mahenderkar, N.K., Chen, Q., Tubbesing, J.Z., Switzer, J.A., Science 12, 166 (2019).Google Scholar
López-Mejías, V., Knight, J.L., Brooks, C.L. III, Matzger, A.J., Langmuir 27, 7575 (2011).CrossRefGoogle Scholar
Joo, Y., Brady, G.J., Arnold, M.S., Gopalan, P., Langmuir 30, 3460 (2014).10.1021/la500162xCrossRefGoogle ScholarPubMed
Chen, D., Li, T., Yin, L., Hou, X., Yu, X., Zhang, Y., Fan, B., Wang, H., Li, X., Zhang, R., Hou, T., Lu, H., Xu, H., Sun, J., Gao, L., Mater. Chem. Phys. 125 (3), 838 (2011).CrossRefGoogle Scholar
Amiel, C., Sikka, M., Schneider, J.W. Jr., Tsao, Y.H., Tirrell, M., Mays, J.W., Macromolecules 28 (9), 3125 (1995).10.1021/ma00113a015CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 53
Total number of PDF views: 142 *
View data table for this chart

* Views captured on Cambridge Core between 10th November 2020 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-5qzh9 Total loading time: 0.663 Render date: 2021-01-27T05:03:44.249Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Frontiers in hybrid and interfacial materials chemistry research
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Frontiers in hybrid and interfacial materials chemistry research
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Frontiers in hybrid and interfacial materials chemistry research
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *