Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-npccv Total loading time: 0.478 Render date: 2022-09-28T11:14:49.299Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level

Published online by Cambridge University Press:  12 July 2012

Stephen Jesse
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; sjesse@ornl.gov
Amit Kumar
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; ka7@ornl.gov
Thomas M. Arruda
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; arrudatm@ornl.gov
Yunseok Kim
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; kimy4@ornl.gov
Sergei V. Kalinin
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; sergei2@ornl.gov
Francesco Ciucci
Affiliation:
Hong Kong University of Science and Technology; mefrank@ust.hk
Get access

Abstract

Atomistic and nanometer scale mechanisms of electrochemical reactions and ionic flows in solids in the nanometer–micron range persist as terra incognito in modern science. While structural and electronic phenomena are now accessible to electron and scanning probe microscopy (SPM) techniques, probing nanoscale electrochemistry requires the capability to probe local ionic currents. Here, we discuss principles and applications of electrochemical strain microscopy (ESM), a technique based on probing minute deformations induced by electric bias applied to an SPM tip. ESM imaging and spectroscopy are illustrated for several energy storage and conversion materials. We further argue that down-scaling of physical device structures based on oxides necessitates ionic and electrochemical effects to be taken into account. Future pathways for ESM development are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tarascon, J.M., Armand, M., Nature 414 (6861), 359 (2001).CrossRefGoogle Scholar
2.Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P., Adv. Mater. 10 (10), 725 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
3.Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., J. Appl. Phys. 90 (3), 1387 (2001).CrossRefGoogle Scholar
4.Adler, S.B., Chem. Rev. 104 (10), 4791 (2004).CrossRefGoogle Scholar
5.Bagotsky, V.S., Fuel Cells: Problems and Solutions (Wiley, NY, 2009).Google Scholar
6.Gerber, C., Lang, H.P., Nat. Nanotechnol. 1 (1), 3 (2006).CrossRefGoogle Scholar
7.Pan, S.H., Hudson, E.W., Lang, K.M., Eisaki, H., Uchida, S., Davis, J.C., Nature 403 (6771), 746 (2000).CrossRefGoogle Scholar
8.Roushan, P., Seo, J., Parker, C.V., Hor, Y.S., Hsieh, D., Qian, D., Richardella, A., Hasan, M.Z., Cava, R.J., Yazdani, A., Nature 460 (7259), 1106 (2009).CrossRefGoogle Scholar
9.Fath, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A., Science 285 (5433), 1540 (1999).Google Scholar
10.Wu, S.W., Ogawa, N., Ho, W., Science 312 (5778), 1362 (2006).CrossRefGoogle Scholar
11.Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E., Science 275 (5304), 1295 (1997).CrossRefGoogle Scholar
12.Jesse, S., Rodriguez, B.J., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Zhang, J., Chen, L.Q., Kalinin, S.V., Nat. Mater. 7 (3), 209 (2008).CrossRefGoogle Scholar
13.Kalinin, S.V., Jesse, S., Rodriguez, B.J., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Phys. Rev. Lett. 100, 15 (2008).CrossRefGoogle Scholar
14.Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G., Nat. Mater. 9 (4), 353 (2010).CrossRefGoogle Scholar
15.Kalinin, S.V., Balke, N., Adv. Mater. 22 (35), E193 (2010).CrossRefGoogle Scholar
16.Kostecki, R., McLarnon, F., Appl. Phys. Lett. 76 (18), 2535 (2000).CrossRefGoogle Scholar
17.Lee, M., O’Hayre, R., Prinz, F.B., Gur, T.M., Appl. Phys. Lett. 85 (16), 3552 (2004).CrossRefGoogle Scholar
18.Alliata, D., Kotz, R., Novak, P., Siegenthaler, H., Electrochem. Commun. 2 (6), 436 (2000).CrossRefGoogle Scholar
19.Garcia, R., Calleja, M., Perez-Murano, F., Appl. Phys. Lett. 72 (18), 2295 (1998).CrossRefGoogle Scholar
20.Garcia, R., Losilla, N.S., Martinez, J., Martinez, R.V., Palomares, F.J., Huttel, Y., Calvaresi, M., Zerbetto, F., Appl. Phys. Lett. 96, 14 (2010).Google Scholar
21.Garcia, R., Martinez, R.V., Martinez, J., Chem. Soc. Rev. 35 (1), 29 (2006).CrossRefGoogle Scholar
22.Tian, Y., Timmons, A., Dahn, J.R., J. Electrochem. Soc. 156 (3), A187 (2009).CrossRefGoogle Scholar
23.Vullum, F., Teeters, D., J. Power Sources 146 (1–2), 804 (2005).CrossRefGoogle Scholar
24.Lee, W., Lee, M., Kim, Y.B., Prinz, F.B., Nanotechnology 20, 44 (2009).Google Scholar
25.Taskiran, A., Schirmeisen, A., Fuchs, H., Bracht, H., Roling, B., Phys. Chem. Chem. Phys. 11 (26), 5499 (2009).CrossRefGoogle Scholar
26.Schirmeisen, A., Taskiran, A., Fuchs, H., Bracht, H., Murugavel, S., Roling, B., Phys. Rev. Lett. 98, 22 (2007).CrossRefGoogle Scholar
27.McEvoy, T.M., Stevenson, K.J., Langmuir 21 (8), 3521 (2005).CrossRefGoogle Scholar
28.Shao, R., Kalinin, S.V., Bonnell, D.A., Appl. Phys. Lett. 82 (12), 1869 (2003).CrossRefGoogle Scholar
29.O’Hayre, R., Lee, M., Prinz, F.B., J. Appl. Phys. 95 (12), 8382 (2004).CrossRefGoogle Scholar
30.Pingree, L.S.C., Martin, E.F., Shull, K.R., Hersam, M.C., IEEE Trans. Nanotechnol. 4 (2), 255 (2005).CrossRefGoogle Scholar
31.Louie, M.W., Hightower, A., Haile, S.M., ACS Nano 4 (5), 2811 (2010).CrossRefGoogle Scholar
32.Balke, N., Jesse, S., Morozovska, A.N., Eliseev, E., Chung, D.W., Kim, Y., Adamczyk, L., Garcia, R.E., Dudney, N., Kalinin, S.V., Nat. Nanotechnol. 5 (10), 749 (2010).CrossRefGoogle Scholar
33.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., Kalinin, S.V., Nano Lett. 10 (9), 3420 (2010).CrossRefGoogle Scholar
34.Morozovska, A.N., Eliseev, E.A., Balke, N., Kalinin, S.V., J. Appl. Phys. 108, 5 (2010).Google Scholar
35.Gruverman, A., Kholkin, A., Rep. Prog. Phys. 69 (8), 2443 (2006).CrossRefGoogle Scholar
36.Gruverman, A., Auciello, O., Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).CrossRefGoogle Scholar
37.Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Rep. Prog. Phys. 73, 5 (2010).CrossRefGoogle Scholar
38.Balke, N., Bdikin, I., Kalinin, S.V., Kholkin, A.L., J. Am. Ceram. Soc. 92 (8), 1629 (2009).CrossRefGoogle Scholar
39.Bintachitt, P., Trolier-McKinstry, S., Seal, K., Jesse, S., Kalinin, S.V., Appl. Phys. Lett. 94, 4 (2009).CrossRefGoogle Scholar
40.Jesse, S., Guo, S., Kumar, A., Rodriguez, B.J., Proksch, R., Kalinin, S.V., Nanotechnology 21, 40 (2010).CrossRefGoogle Scholar
41.Rodriguez, B.J., Callahan, C., Kalinin, S.V., Proksch, R., Nanotechnology 18, 47 (2007).Google Scholar
42.Kos, A.B., Hurley, D.C., Meas. Sci. Technol. 19, 1 (2008).CrossRefGoogle Scholar
43.Jesse, S., Kalinin, S.V., J. Phys. D: Appl. Phys. 44, 46 (2011).CrossRefGoogle Scholar
44.Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., Rodriguez, B.J., Nanotechnology 18, 43 (2007).CrossRefGoogle Scholar
45.Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C., Kalinin, S.V., J. Electrochem. Soc. 158 (8), A982 (2011).CrossRefGoogle Scholar
46.Jesse, S., Balke, N., Eliseev, E., Tselev, A., Dudney, N.J., Morozovska, A.N., Kalinin, S.V., ACS Nano 5 (12), 9682 (2011).CrossRefGoogle Scholar
47.Amatucci, G.G., Tarascon, J.M., Klein, L.C., J. Electrochem. Soc. 143 (3), 1114 (1996).CrossRefGoogle Scholar
48.Adler, S.B., J. Am. Ceram. Soc. 84 (9), 2117 (2001).CrossRefGoogle Scholar
49.Chen, X.Y., Yu, J.S., Adler, S.B., Chem. Mater. 17 (17), 4537 (2005).CrossRefGoogle Scholar
50.Kharton, V.V., Marques, F.M.B., Atkinson, A., Solid State Ionics 174 (1–4), 135 (2004).CrossRefGoogle Scholar
51.Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S., Nat. Chem. 3 (9), 707 (2011).CrossRefGoogle Scholar
52.Kalinin, S.V., Jesse, S., Tselev, A., Baddorf, A.P., Balke, N., ACS Nano 5 (7), 5683 (2011).CrossRefGoogle Scholar
53.Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., Evans, C.D., Solid State Ionics 135 (1–4), 33 (2000).CrossRefGoogle Scholar
54.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Ivanov, I.N., Dudney, N.J., Kalinin, S.V., ACS Nano 4 (12), 7349 (2010).CrossRefGoogle Scholar
55.Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nat. Nanotechnol. 3 (1), 31 (2008).CrossRefGoogle Scholar
56.Morozovska, A.N., Eliseev, E.A., Tagantsev, A.K., Bravina, S.L., Chen, L.Q., Kalinin, S.V., Phys. Rev. B 83, 19 (2011).CrossRefGoogle Scholar
57.Ciucci, F., Chueh, W.C., Goodwin, D.G., Haile, S.M., Phys. Chem. Chem. Phys. 13 (6), 2121 (2011).CrossRefGoogle Scholar
58.Lai, W., Ciucci, F., Electrochim. Acta 56 (1), 531 (2010).CrossRefGoogle Scholar
59.Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., J. Phys. Chem. Lett. 1 (14), 2193 (2010).CrossRefGoogle Scholar
60.Goodenough, J.B., Kim, Y., Chem. Mater. 22 (3), 587 (2010).CrossRefGoogle Scholar
61.Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21 (25–26), 2632 (2009).CrossRefGoogle Scholar
62.Arruda, T.M., Kumar, A., Kalinin, S.V., Jesse, S., Nano Lett. 11 (10), 4161 (2011).CrossRefGoogle Scholar
63.Bristowe, N.C., Littlewood, P.B., Artacho, E., Phys. Rev. B 83, 20 (2011).CrossRefGoogle Scholar
64.Bi, F., Bogorin, D.F., Cen, C., Bark, C.W., Park, J.W., Eom, C.B., Levy, J., Appl. Phys. Lett. 97, 17 (2010).CrossRefGoogle Scholar
65.Wang, R.V., Fong, D.D., Jiang, F., Highland, M.J., Fuoss, P.H., Thompson, C., Kolpak, A.M., Eastman, J.A., Streiffer, S.K., Rappe, A.M., Stephenson, G.B., Phys. Rev. Lett. 102, 4 (2009).Google Scholar
66.Sai, N., Kolpak, A.M., Rappe, A.M., Phys. Rev. B 72, 2 (2005).CrossRefGoogle Scholar
67.Yi, H.T., Choi, T., Choi, S.G., Oh, Y.S., Cheong, S.W., Adv. Mater. 23 (30), 3403 (2011).CrossRefGoogle Scholar
68.Jiang, W., Noman, M., Lu, Y. M., Bain, J.A., Salvador, P.A., Skowronski, M., J. Appl. Phys. 110, 3 (2011).Google Scholar
69.Fleig, J., Schintlmeister, A., Opitz, A.K., Hutter, H., Scr. Mater. 65 (2), 78 (2011).CrossRefGoogle Scholar
70.Spaldin, N.A., Fiebig, M., Science 309 (5733), 391 (2005).CrossRefGoogle ScholarPubMed
71.Kim, Y., Disa, A.S., Babakol, T.E., Brock, J.D., Appl. Phys. Lett. 96, 25 (2010).Google Scholar
72.Kalinin, S., Balke, N., Jesse, S., Tselev, A., Kumar, A., Arruda, T.M., Guo, S., Proksch, R., Mater. Today 14, 548 (2011).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *