Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.276 Render date: 2021-03-06T15:26:44.997Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Designing New Structural Materials Using Density Functional Theory: The Example of Gum MetalTM

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

As an example of the application of density functional theory (DFT) to materials design, we describe our use of ab initio calculations based on DFT to develop a new structural material: Gum MetalTM, a novel, multifunctional titanium alloy with a low Young's modulus and high strength. We first carried out calculations on elastic constants in several Ti-X binary alloys to obtain the basic principles on which to determine the compositional limitations of an alloy with a low modulus. The elastic properties in the Ti-based binary alloys were successfully estimated by ab initio calculations, with the result implying absolute elastic softening at the valence electron number per atom, e/a, of 4.24. We also studied the effects of additional elements experimentally and, by comparison with electronic-structure calculations, found two more key parameters (approximately representing bond strength and electronegativity), critical for the design of practical elastic properties. We discuss dislocation-free plastic deformation of Gum Metal and its relation to the absolute elastic softening at an e/a value of 4.24, and finally we discuss the prospects for future applications of DFT in structural materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1Söderlind, P., Eriksson, O.Wills, J.M. and Boring, A.M.Phys. Rev. B 48 (1993) p.5844.CrossRefGoogle Scholar
2Korzhavyi, P.A.Ruban, A.V.Simak, S.I. and Vekilov, Yu.Kh., Phys. Rev. B 49 (1994) p.14229.CrossRefGoogle Scholar
3Antropov, V.P. and Harmon, B.N.Phys. Rev. B 51 (1995) p.1918.CrossRefGoogle Scholar
4Guo, G.Y. and Wang, H.H.Phys. Rev. B 62 (2000) p.5136.CrossRefGoogle Scholar
5Jochym, P.T. and Parlinski, K.Phys. Rev. B 65 024106 (2001).CrossRefGoogle Scholar
6Uesugi, T.Kohyama, M.Kohzu, M. and Higashi, K.Mater. Trans. 42 (2001) p.1167.CrossRefGoogle Scholar
7Vitos, L.Korzhavyi, P.A. and Johansson, B.Phys. Rev. Lett. 88 155501 (2002).CrossRefGoogle Scholar
8Magyari-Köpe, B., Grimvall, G. and Vitos, L.Phys. Rev. B 66 064210 (2002).CrossRefGoogle Scholar
9Lee, Y. and Harmon, B.N.J.Alloys Compd. 338 (2002) p.242.CrossRefGoogle Scholar
10Chen, K. and Zhao, L.R.J. Appl. Phys. 93 (2003) p.2414.CrossRefGoogle Scholar
11Johansson, B.Vitos, L. and Korzhavyi, P.A.Solid State Sci. 5 (2003) p.931.CrossRefGoogle Scholar
12Uesugi, T.Takigawa, Y. and Higashi, K.Mater. Trans. 46 (2005) p.1117.CrossRefGoogle Scholar
13. Mryasov, O.N. and Freeman, A.J.Mater. Sci. Eng. A 260 (1999) p.80.CrossRefGoogle Scholar
14Roundy, D.Krenn, C.R.Cohen, M.L. and Morris, J.W. Jr, Phys. Rev. Lett. 82 (1999) p.2713.CrossRefGoogle Scholar
15Morris, J.W. Jr, Krenn, C.R.Roundy, D. and Cohen, M.L.Mater. Sci. Eng. A 309-310 (2001) p.121.CrossRefGoogle Scholar
16Krenn, C.R.Roundy, D.Morris, J.W. Jr and Cohen, M.L.Mater. Sci. Eng. A A319-321 (2001) p.111.CrossRefGoogle Scholar
17Luo, W.Roundy, D.Cohen, M.L. and Morris, J.W. Jr, Phys. Rev. B 66 094110(2002).CrossRefGoogle Scholar
18.Clatterbuck, D.M.Chrzan, D.C. and Morris, J.W. Jr, Acta Mater. 51 (2003) p.2271.CrossRefGoogle Scholar
19Kawazoe, Y.Mater. Design 22 (2001) p.61.CrossRefGoogle Scholar
20Saito, T.Furuta, T.Hwang, J.H.Ku-ramoto, S., Nishino, K.Suzuki, N.Chen, R.Yamada, A.Ito, K.Seno, Y.Nonaka, T.Ikehata, H.Nagasako, N.Iwamoto, C.Ikuhara, Y. and Sakuma, T.Science 300 (2003) p.464.CrossRefGoogle Scholar
21Ikehata, H.Nagasako, N.Furuta, T.Fukumoto, A.Miwa, K. and Saito, T.Phys Rev B 70 174113 (2004).CrossRefGoogle Scholar
22Kuramoto, S.Ikehata, H.Nagasako, N.Hwang, J.H.Furuta, T.Nishino, K. and Saito, T.TMS Lett. 2 (2005) p.5.Google Scholar
23Voigt, W.Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928) p.716.Google Scholar
24Reuss, A. and Angew, Z.Math. Mech. 9 (1929) p.49.Google Scholar
25Hill, R.Proc. Phys. Soc., London, Sect. A 65 (1952) p.349.CrossRefGoogle Scholar
26Grimvall, G.Thermophysical Properties of Materials (North-Holland, Amsterdam, 1999).Google Scholar
27.Morinaga, M.Yukawa, N. and Adachi, H.Tetsu To Hagane 72 (1986) p.555.CrossRefGoogle Scholar
28Kuramoto, S.Furuta, T.Hwang, J.H.Nishino, K. and Saito, T.J. Jpn. Inst. Metals 69 (2005) p.953.CrossRefGoogle Scholar
29Kuramoto, S.Furuta, T.Hwang, J.H.Nishino, K. and Saito, T.Metall. Mater. Trans. A 37A (2006) p.657.CrossRefGoogle Scholar
30Souvatzis, P.Katsnelson, M.I.Simak, S.Ahuja, R. and Eriksson, O.Phys. Rev. B 70 012201 (2004).CrossRefGoogle Scholar
31Mryasov, O.N.Gornostyrev, Y.N. and Freeman, A.J.Phys. Rev. B 58 (1998) p.11927.CrossRefGoogle Scholar
32Lu, G.Kioussis, N.Bulatov, V.V. and Kaxiras, E.Mat. Sci. Eng. A 309-310 (2001) p. 142.Google Scholar
33Yan, J.-A, Wang, C.-Y., and Wang, S.-Y., Phys. Rev. B 70 174105 (2004).CrossRefGoogle Scholar
34Gavriljuk, V.G.Shivanyuk, V.N. and Shanina, B.D.Acta Mater. 53 (2005) p.5017.CrossRefGoogle Scholar
34Terakura, K.Oguchi, T.Mohri, T. and Watanabe, K.Phys. Rev. B 35 (1987) p.2169.CrossRefGoogle Scholar
35Kaufman, L.Turchi, P.E.A.Huang, W. and Liu, Z.-K., Calphad 25 (2001) p.419.CrossRefGoogle Scholar
36Ohtani, H.Takeshita, Y. and Hasebe, M.Mater. Trans. 45 (2004) p.1499.CrossRefGoogle Scholar
37Tokunaga, T.Hashima, K.Ohtani, H. and Hasebe, M.Mater. Trans. 45 (2004) p.1507.CrossRefGoogle Scholar
38Turchi, P.E.A.Drchal, V.Kudrnovsky, J.Colinet, C.Kaufman, L. and Liu, Z.-K., Phys. Rev. B 71 094206 (2005).CrossRefGoogle Scholar
39Blaha, P.Schwarz, K.Madsen, G.K.H.Kvasnicka, D. and Luitz, J.WIEN2k: An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2002).Google Scholar
40PWscf (Plane-Wave Self-Consistent Field) home page, http://www.pwscf.org/ (accessed August 2006).Google Scholar
41Kresse, G. and Furthmuller, J., Phys. Rev. B 54 (1996) p.11169.CrossRefGoogle Scholar
42Gonze, X.Beuken, J.-M.Caracas, R.Detraux, F.Fuchs, M.Rignanese, G.-M.Sindic, L.Verstraete, M.Zerah, G.Jollet, F.Torrent, M.Roy, A.Mikami, M.Ghosez, Ph.Raty, J.-Y., and Allan, D.C.Comput. Mater. Sci. 25 (2002) p. 478. The ABINIT code is a common project of the Université Catholique de Louvain, Corning Inc., and other contributors; see http://www.abinit.org (accessed August 2006).CrossRefGoogle Scholar
43Bercegeay, C. and Bernard, S.Phys. Rev. B 72 214101 (2005).CrossRefGoogle Scholar
44Furuta, T.Kuramoto, S.Hwang, J.H.Nishino, K. and Saito, T.Mater. Trans. 46 (2005) p.3001.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 148 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Designing New Structural Materials Using Density Functional Theory: The Example of Gum MetalTM
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Designing New Structural Materials Using Density Functional Theory: The Example of Gum MetalTM
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Designing New Structural Materials Using Density Functional Theory: The Example of Gum MetalTM
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *