Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.295 Render date: 2022-09-30T07:54:48.955Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Cryo-electron microscopy instrumentation and techniques for life sciences and materials science

Published online by Cambridge University Press:  10 December 2019

Robert E.A. Williams
Affiliation:
Center for Electron Microscopy and Analysis, The Ohio State University, USA; williams.2156@osu.edu
David W. McComb
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, USA; mccomb.29@osu.edu
Sriram Subramaniam
Affiliation:
Department of Biochemistry and Molecular Biology, The University of British Columbia, Canada; sriram.subramaniam@ubc.ca
Get access

Abstract

In this article, we review some of the recent developments in instrumentation and methods that have led to the rise of cryo-electron microscopy (cryo-EM) in the life sciences community, and consider how researchers in the materials community might benefit from these advances. Transmission electron microscopy (TEM) is compared with scanning transmission electron microscopy (STEM) for cryogenic imaging in both biological and materials science applications. We discuss the developments in detector technologies that have in part powered the development of cryo-EM and anticipate exciting areas for productive overlap between life science and materials science cryo-EM applications.

Type
Cryogenic Electron Microscopy in Materials Science
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Henderson, R., Q Rev Biophys. 28, 2 (1995).CrossRefGoogle Scholar
Hayward, S.B., M Glaeser, R., Ultramicroscopy 4 (2), 201 (1979).CrossRefGoogle Scholar
Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y., Nat. Methods. 6, 584 (2013).CrossRefGoogle Scholar
Frank, J., Angew Chem. Int. Ed. Engl. 57, 34 (2018).CrossRefGoogle Scholar
Bartesaghi, A., Merk, A., Banerjee, S., Matthies, D., Wu, X., Milne, J.L., Subramaniam, S., Science 348, 1147 (2015).CrossRefGoogle Scholar
Sousa, A.A., Leapman, R.D., Ultramicroscopy 123, 38 (2012).CrossRefGoogle Scholar
Wolf, S., Elbaum, M., in Methods in Cell Biology, Müller-Reichert, T., Pigino, G., Eds., (Academic Press, Cambridge, MA, 2019), vol. 152, p. 197.Google Scholar
Pennycook, S.J., Nellist, P.D., Eds., Scanning Transmission Electron Microscopy Imaging and Analysis (Springer, New York, 2011).CrossRefGoogle Scholar
Savitzky, B.H., El Baggari, I., Clement, C.B., Waite, E., Goodge, B.H., Baek, D.J., Sheckelton, J.P., Pasco, C., Nair, H., Schreiber, N.J., Hoffman, J., Admasu, A.S., Kim, J., Cheong, S.-W., Bhattacharya, A., Schlom, D.G., McQueen, T.M., Hovden, R., Kourkoutis, L.F., Ultramicroscopy 191, 56 (2018).CrossRefGoogle Scholar
Goodge, B.H., Bianco, E., Zandbergen, H.W., Kourkoutis, L.F., Microsc. Microanal. 25, 930 (2019).CrossRefGoogle Scholar
Minor, A.M., Denes, P., Muller, D.A., MRS Bull. 44 (12), 961 (2019).CrossRefGoogle Scholar
Homo, J.C., Booy, F., Labouesse, P., Lepault, J., Dubochet, J., J. Microsc. 136, 337 (2011).CrossRefGoogle Scholar
Tate, M.W., Purohit, P., Chamberlain, D., Nguyen, K.X., Microsc. Microanal. 22, 237 (2016).CrossRefGoogle Scholar
Jiang, Y., Chen, Z., Han, Y., Deb, P., Gao, H., Xie, S., Purohit, P., Tate, M.W., Park, J., Gruner, S.M., Elser, V., Muller, D.A., Nature 559, 343 (2018).CrossRefGoogle Scholar
Courtland, R., Nature 563, 462 (2018).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cryo-electron microscopy instrumentation and techniques for life sciences and materials science
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cryo-electron microscopy instrumentation and techniques for life sciences and materials science
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cryo-electron microscopy instrumentation and techniques for life sciences and materials science
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *