Skip to main content Accessibility help
×
Home

Article contents

Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Carbon nanotubes (CNTs) with macroscopically ordered structures (e.g., aligned or patterned mats, fibers, and sheets) and associated large surface areas have proven promising as new CNT electroactive polymer materials (CNT-EAPs) for the development of advanced chemical and biological sensors. The functionalization of CNTs with many biological species to gain specific surface characteristics and to facilitate electron transfer to and from them for chemical- and bio-sensing applications is an area of intense research activity.

Mechanical actuation generated by CNT-EAPs is another exciting electroactive function provided by these versatile materials. Controlled mechanical deformation for actuation has been demonstrated in CNT mats, fibers, sheets, and individual nanotubes. This article summarizes the current status and technological challenges for the development of electrochemical sensors and electromechanical actuators based on carbon nanotube electroactive materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Marsh, H., Introduction to Carbon Science (Butterworth, London, 1989).Google Scholar
2.Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
3.Hirsch, A., The Chemistry of the Fullerenes (Thieme, Stuttgart, 1994).CrossRefGoogle Scholar
4.Iijima, S., Nature 56, 354 (1991).Google Scholar
5.Dai, L., Ed., Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications (Elsevier, Amsterdam, 2006).Google Scholar
6.Wallace, G.G., Spinks, G.M., Teasdale, P.T., Conductive Electroactive Polymers: Intelligent Materials Systems (Technomic, Lancaster, PA, 1997).Google Scholar
7.Dai, L., Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications (Springer, Berlin, 2004).Google Scholar
8.Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Science 297, 787 (2002).CrossRefGoogle Scholar
9.Dresselhaus, M.S., Dai, H., MRS Bull. 29, 237 (2004).CrossRefGoogle Scholar
10.Liu, J., Fan, S.S., Dai, H.H., MRS Bull. 29, 244 (2004).CrossRefGoogle Scholar
11.McEuen, P.L., Park, J.Y., MRS Bull. 29, 272 (2004).CrossRefGoogle Scholar
12.Dai, L., Patil, A., Gong, X.Y., Guo, Z.X., Liu, L.Q., Liu, Y., Zhu, D.B., Chem. Phys. Chem. 4, 1150 (2003) and references refd therein.CrossRefGoogle Scholar
13.Yan, Y., Chan-Park, M.B., Zhang, Q., Small 3, 24 (2007) and reference refd therein.CrossRefGoogle Scholar
14.Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., Ajayan, P.M., Nature 416, 495 (2002).CrossRefGoogle Scholar
15.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
16.Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, M.Y., Li, W.Z., Nature 394, 631 (1998).CrossRefGoogle Scholar
17.Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J., Science 283, 512 (1999).CrossRefGoogle Scholar
18.Rao, C.N.R., Sen, R., Satishkumar, B.C., Govindaraj, A., Chem. Commun. 15, 1525 (1998).CrossRefGoogle Scholar
19.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998).CrossRefGoogle Scholar
20.Huang, S., Dai, L., Mau, A.W.H., J. Phys. Chem. B 103, 4223 (1999).CrossRefGoogle Scholar
21.Yang, Y., Huang, S., He, H.Z., Mau, A.W.H., Dai, L., J. Am. Chem. Soc. 121, 10832 (1999).CrossRefGoogle Scholar
22.Patil, A., Ohashi, T., Buldum, A., Dai, L., Appl. Phys. Lett. 89, 103103 (2006).CrossRefGoogle Scholar
23.Hata, K., Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).CrossRefGoogle Scholar
24.Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J. P., Nishi, Y., Gibbons, J., Dai, H., Proc. Natl. Acad. Sci. USA 102, 16141 (2005).CrossRefGoogle Scholar
25.Eres, G., Kinkhabwala, A.A., Cui, H., Geohegan, D.B., Puretzky, A.A., Lowndes, D.H., J. Phys. Chem. B 109, 16684 (2005).CrossRefGoogle Scholar
26.Iwasaki, T., Zhong, G., Aikawa, T., Yoshida, T., Kawarada, H., J. Phys. Chem. B 109, 19556 (2005).CrossRefGoogle Scholar
27.Xu, Y.Q., Flor, E., Kim, M.J., Hamadani, B., Schmidt, H., Smalley, R.E., Hauge, R.H., J. Am. Chem. Soc. 128, 6560 (2006).CrossRefGoogle Scholar
28.Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A.C., Blackburn, A.M., Wang, K.Y., Robertson, J., Nano Lett. 6, 1107 (2006).CrossRefGoogle Scholar
29.Murakami, Y., Chiasi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., Maruyama, S., Chem. Phys. Lett. 385, 298 (2004).CrossRefGoogle Scholar
30.Zhang, L., Tan, Y.Q., Resasco, D.E., Chem. Phys. Lett. 422, 198 (2006).CrossRefGoogle Scholar
31.Chakrabarti, S., Nagasaka, T., Yoshikawa, Y., Pan, L., Nakayama, Y., Jpn. J. Appl. Phys., 45, L720 (2006).CrossRefGoogle Scholar
32.Zhong, G.F., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., Kawarada, H., Jpn. J. Appl. Phys. 44, 1558 (2005).CrossRefGoogle Scholar
33.Yang, J., Qu, L.T., Zhao, Y., Zhang, Q.H., Dai, L.M., Baur, J.W., Maruyama, B., Vaia, R.A., Shin, E., Murray, P.T., Luo, H.X., Guo, Z.X., J. Nanosci. Nanotechnol. 7, 1573 (2007).CrossRefGoogle Scholar
34.Qu, L.T., Dai, L., J. Mater. Chem. 17, 3401 (2007).CrossRefGoogle Scholar
35.Yang, J., Dai, L., Vaia, R.A., J. Phys. Chem. B 107, 12387 (2003).CrossRefGoogle Scholar
36.Li, Y., Li, Y., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D., Yenilmez, E., Wang, Q., Gibbons, J.F., Nishi, Y., Dai, H., Nano Lett. 4, 317 (2004).CrossRefGoogle Scholar
37.Li, Y., Peng, S., Mann, D., Cao, J., Tu, R., Cho, K.J., Dai, H., J. Phys. Chem. B 109, 6968 (2005).CrossRefGoogle Scholar
38.Bachilo, S.M., Balzano, L., Herrera, J.F., Pompeo, F., Resasco, D.E., Weisman, R.B., J. Am. Chem. Soc. 125, 11186 (2003).CrossRefGoogle Scholar
39.Krupke, R., Hennrich, F., Löhneysen, H.v., Kappes, M.M., Science 301, 344 (2003).CrossRefGoogle Scholar
40.Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., J. Am. Chem. Soc. 125, 3370 (2003).CrossRefGoogle Scholar
41.Zheng, M., Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J., Science 302, 1545 (2003).CrossRefGoogle Scholar
42.Maeda, Y., Kimura, S., Kanda, M., Hirashima, Y., Hasegawa, T., Wakahara, T., Lian, Y., Nakahodo, T., Tsuchiya, T., Akasaka, T., Lu, J., Zhang, X., Gao, Z., Yu, Y., Nagase, S., Kazaoui, S., Minami, N., Shimizu, T., Tokumoto, H., Saito, R., J. Am. Chem. Soc. 127, 10287 (2005).CrossRefGoogle Scholar
43.Banerjee, S., Wong, S., Nano Lett. 8, 1445 (2004).CrossRefGoogle Scholar
44.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E., Science 301, 1519 (2003).CrossRefGoogle Scholar
45.Kamaras, K., Itkis, M.E., Hu, H., Zhao, B., Haddon, R.C., Science 301, 1501 (2003).CrossRefGoogle Scholar
46.Chen, Z., Du, X., Du, M.H., Rancken, C.D., Cheng, H.P., Rinzler, A.G., Nano Lett. 3, 1245 (2003).CrossRefGoogle Scholar
47.Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C., Nat. Nanotech. 1, 60 (2006).CrossRefGoogle Scholar
48.Collins, P., Arnold, M.S., Avouris, P., Science 292, 706 (2001).CrossRefGoogle Scholar
49.An, L., Fu, Q., Lu, C., Liu, J., J. Am. Chem. Soc. 126, 10520 (2004).CrossRefGoogle Scholar
50.Zhang, G., Qi, P., Wang, X., Lu, Y., Li, X., Tu, R., Bangsaruntip, S., Mann, D., Zhang, L., Dai, H., Science 314, 974 (2006).CrossRefGoogle Scholar
51.Zhang, M., Atkinson, K., Baughman, R., Science 306, 1358 (2004).CrossRefGoogle Scholar
52.Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H., Science 309, 1215 (2005).CrossRefGoogle Scholar
53.Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P., Science 290, 1331 (2000).CrossRefGoogle Scholar
54.Jiang, K., Li, Q., Fan, S., Nature 419, 801 (2002).CrossRefGoogle Scholar
55.Ericson, L.M., Fan, H., Peng, H., Davis, V.A., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A.N.G., Kim, M.J., Ramesh, S., Saini, R.K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W.W., Billups, W.E., Pasquali, M., Hwang, W.F., Hauge, R.H., Fischer, J.E., Smalley, R.E., Science 305, 1447 (2004).CrossRefGoogle Scholar
56.Li, Y., Kinloch, I.A., Windle, A.H., Science 304, 274 (2004).CrossRefGoogle Scholar
57.Ci, L., Punbusayakul, N., Wei, J., Vajtai, R., Talapatra, S., Ajayan, P.M., Adv. Mater. 19, 1719 (2007).CrossRefGoogle Scholar
58.Kam, N.W.S., Liu, Z., Dai, H., Angew. Chem. Int. Ed. 45, 577 (2006).CrossRefGoogle Scholar
59.Kam, N., O'Connell, M., Wisdom, J.A., Dai, H.J., Proc. Natl. Acad. Sci. USA 102, 11600 (2005).CrossRefGoogle Scholar
60.Bianco, A., Hoebeke, J., Godefroy, S., Chaloin, O., Pantarotto, D., Briand, J.-P., Muller, S., Prato, M., Partidos, C.D., J. Am. Chem. Soc. 127, 58 (2005).CrossRefGoogle Scholar
61.Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B., J. Am. Chem. Soc. 126, 15638 (2004).CrossRefGoogle Scholar
62.Liu, Y., Wu, D., Zhang, W., Jiang, X., He, C., Chung, T.S., Goh, S.H., Leong, K.W., Angew. Chem. Int. Ed. 44, 4782 (2005).CrossRefGoogle Scholar
63.Lu, Q., Moore, J.M., Huang, G., Mount, A.S., Rao, A.M., Larcom, L.L., Ke, P.C., Nano Lett. 4, 2473 (2004).CrossRefGoogle Scholar
64.He, P., Dai, L., Biomedical and Biological Nanotechnology, Lee, J., Lee, A., Eds., 1, 175, in The Handbook of BioMEMS and Bio-Nanotechnology, M. Ferrari, Ed. (Kluwer Academic, London, 2005).Google Scholar
65.Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H., Science 287, 622 (2000).CrossRefGoogle Scholar
66.Kong, J., Chapline, M.G., Dai, H., Adv. Mater. 13, 1384 (2001).3.0.CO;2-8>CrossRefGoogle Scholar
67.Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Science 287, 1801 (2000).CrossRefGoogle Scholar
68.Adu, C.K.W., Sumanasekera, G.U., Pradhan, B.K., Romero, H.E., Eklund, P.C., Chem. Phys. Lett. 337, 31 (2001).CrossRefGoogle Scholar
69.Romero, H.E., Bolton, K., Rosén, A., Eklund, P.C., Science 307, 89 (2005).CrossRefGoogle Scholar
70.Modi, A., Koratkar, N., Lass, E., Wei, B., Ajayan, P.M., Nature 424, 171 (2003).CrossRefGoogle Scholar
71.Qu, L., Dai, L., Chem. Commun. 37, 3859 (2007).CrossRefGoogle Scholar
72.Wei, C., Dai, L., Roy, A., Tolle, T.B., J. Am. Chem. Soc. 128, 1412 (2006).CrossRefGoogle Scholar
73.Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chem. Rev. 106, 1105 (2006).CrossRefGoogle Scholar
74.Jung, Y.J., Kar, S., Talapatra, S., Soldano, C., Viswanathan, G., Li, X., Yao, Z., Ou, F.S., Avadhanula, A., Vajtai, R., Curran, S., Nalamasu, O., Ajayan, P.M., Nano Lett. 6, 413 (2006).CrossRefGoogle Scholar
75.Bullis, K., MIT Technol. Rev. (March 7, 2006); www.techreview.com/Nanotech/16516/page1/.Google Scholar
76.Yurdumakan, B., Raravikar, N.R., Ajayan, P.M., Dhinojwala, A., Chem. Commun. 30, 3799 (2005).CrossRefGoogle Scholar
77.Ge, L., Sethi, S., Ci, L., Ajayan, P.M., Dhinojwala, A., PNAS 104, 10792 (2007).CrossRefGoogle Scholar
78.Qu, L., Dai, L., Adv. Mater. 19, 3844 (2007).CrossRefGoogle Scholar
79.Valcárcel, M., Simonet, B.M., Cárdenas, S., Suárez, B., Anal. Bioanal. Chem. 382, 1783 (2005).CrossRefGoogle Scholar
80.Zhao, G., Zhang, L., Wei, X., Yang, Z., Electrochem. Commun. 5, 825 (2003).CrossRefGoogle Scholar
81.Wang, J., Li, M., Shi, Z., Li, N., Gu, Z., Anal. Chem. 74, 1993 (2002).CrossRefGoogle Scholar
82.Gooding, J.J., Wibowo, R., Liu, J.Q., Yang, W., Losic, D., Orbons, S., Mearns, F.J., Shapter, J.G., Hibbert, D.B., J. Am. Chem. Soc. 125, 9006 (2003).CrossRefGoogle Scholar
83.Gao, M., Huang, S., Dai, L., Wallace, G., Gao, R., Wang, Z., Angew. Chem. Int. Ed. 39, 3664 (2000).3.0.CO;2-Y>CrossRefGoogle Scholar
84.Gao, M., Dai, L., Wallace, G.G., Electroanalysis 15, 1089 (2003).CrossRefGoogle Scholar
85.Yasuzawa, M., Kunugi, A., Electrochem. Commun. 1, 459 (1999).CrossRefGoogle Scholar
86.Qu, L., Zhao, Y., Dai, L., Small 8–9, 1052 (2006).CrossRefGoogle Scholar
87.Wang, J., Musameh, M., Lin, Y., J. Am. Chem. Soc, 125, 2408 (2003).CrossRefGoogle Scholar
88.Luong, J.H.T., Hrapovic, S., Wang, D., Bensebaa, F., Simard, B., Electroanalysis 16, 132 (2004).CrossRefGoogle Scholar
89.Lin, Y., Lu, F., Tu, Y., Ren, Z., Nano Lett. 4, 191 (2004).CrossRefGoogle Scholar
90.Tu, Y., Lin, Y., Ren, Z., Nano Lett. 3, 107 (2003).CrossRefGoogle Scholar
91.Tu, Y., Huang, Z.P., Wang, D.Z., Wen, J.G., Ren, Z.F., Appl. Phys. Lett. 80, 4018 (2002).CrossRefGoogle Scholar
92.Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., Rusling, J.F., Electrochem. Commun. 5, 408 (2003).CrossRefGoogle Scholar
93.Patolsky, F., Weizmann, Y., Willner, I., Angew. Chem. Int. Ed. 43, 2113 (2004).CrossRefGoogle Scholar
94.Xu, Y., Jiang, Y., Cai, H., He, P., Fang, Y., Anal. Chim. Acta 516, 19 (2004) and references therein.CrossRefGoogle Scholar
95.Wang, J., Liu, G., Jan, M.R., J. Am. Chem. Soc. 126, 3010 (2004) and references therein.CrossRefGoogle Scholar
96.He, P., Dai, L., Chem. Commun. 3, 348 (2004).CrossRefGoogle Scholar
97.Koehne, J., Meyyappan, M., Nanotechnology 14, 1239 (2003) and references therein.CrossRefGoogle Scholar
98.Yeh, I.C., Hummer, G., Proc. Natl. Acad. Sci. USA 17, 12177 (2004).CrossRefGoogle Scholar
99.An, Y.H., Song, S.M., Mol. Cell. Toxicol. 2, 279 (2006).Google Scholar
100.Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G., Science 303, 62 (2004).CrossRefGoogle Scholar
101.Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).CrossRefGoogle Scholar
102.Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E., Nature 384, 147 (1996).CrossRefGoogle Scholar
103.Wong, S.S., Harper, J.D., Lansbury, P.T. Jr, Lieber, C.M., J. Am. Chem. Soc. 120, 603 (1998).CrossRefGoogle Scholar
104.Nguyen, C.V., So, C., Stevens, R.M., Li, Y., Delziet, L., Sarrazin, P., Meyyappan, M., J. Phys. Chem. B 108, 2816 (2004).CrossRefGoogle Scholar
105.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M., Nature 394, 52 (1998).Google Scholar
106.Wong, S.S., Woolley, A.T., Joselevich, E., Cheung, C.L., Lieber, C.M., J. Am. Chem. Soc. 120, 8557 (1998).CrossRefGoogle Scholar
107.Grow, R.J., Wang, Q., Cao, J., Wang, D., Dai, H., Appl. Phys. Lett. 86, 093104 (2005).CrossRefGoogle Scholar
108.Wood, J.R., Wagner, H.D., Appl. Phys. Lett. 76, 2883 (2000).CrossRefGoogle Scholar
109.Lourie, O., Wagner, H., J. Mater. Res. 13, 2418 (1998).CrossRefGoogle Scholar
110.Hierold, C., Jungen, A., Stampfer, C., Helbling, T., Sens. Actuators A, Phys. 136, 51 (2007).CrossRefGoogle Scholar
111.Král, P., Shapiro, M., Phys. Rev. Lett. 86, 131 (2001).CrossRefGoogle Scholar
112.Ghosh, S., Sood, A.K., Kumar, N., Science 299, 1042 (2003).CrossRefGoogle Scholar
113.Liu, J., Dai, L., Baur, J.W., J. Appl. Phys. 101, 064312 (2007).CrossRefGoogle Scholar
114.Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A., Science 280, 1744 (1998).CrossRefGoogle Scholar
115.Gao, R., Wang, Z.L., Bai, Z., de Heer, W.A., Dai, L., Gao, M., Phys. Rev. Lett. 85, 622 (2000).CrossRefGoogle Scholar
116.Baughman, R.H., Synth. Met. 78, 339 (1996).CrossRefGoogle Scholar
117.Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M., Science 284, 1340 (1999).CrossRefGoogle Scholar
118.Mølhave, K., Hansen, T.M., Madsen, D.N., Bøggild, P., J. Nanosci. Nanotech. 4, 279 (2004).CrossRefGoogle Scholar
119.Kim, P., Lieber, C.M., Science 286, 2148 (1999).CrossRefGoogle Scholar
120.Lee, J., Kim, S., Sens. Actuators A, Phys. 120, 193 (2005).CrossRefGoogle Scholar
121.Ke, C.H., Espinosa, H.D., Appl. Phys. Lett. 85, 681 (2004).CrossRefGoogle Scholar
122.Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., Lieber, C.M., Science 289, 94 (2000).CrossRefGoogle Scholar
123.Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L., Nature 431, 284 (2004).CrossRefGoogle Scholar
124.Lefèvre, R., Goffman, M.F., Derycke, V., Miko, C., Forró, L., Bourgoin, J.P., Hesto, P., Phys. Rev. Lett. 95, 185504 (2005).CrossRefGoogle Scholar
125.Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A., Nature 424, 408 (2003).CrossRefGoogle Scholar
126.Subramanian, A., Dong, L.X., Tharian, J., Sennhauser, U., Nelson, B.J., Nanotechnology 18, 075703 (2007).CrossRefGoogle Scholar
127.Yuzvinsky, T.D., Fennimore, A.M., Kis, A., Zettl, A., Nanotechnology 17, 434 (2006).CrossRefGoogle Scholar
128.Papadakis, S.J., Hall, A.R., Williams, P.A., Vicci, L., Falvo, M.R., Superfine, R., Washburn, S., Phys. Rev. Lett. 93, 146101 (2004).CrossRefGoogle Scholar
129.Meyer, J.C., Paillet, M., Roth, S., Science 309, 1539 (2005).CrossRefGoogle Scholar
130.Nakajima, M., Arai, S., Saito, Y., Arai, F., Fukuda, T., Jap. J. Appl. Phys. Part 2, 46, L1035 (2007).CrossRefGoogle Scholar
131.Cumings, J., Zettl, A., Science, 289, 602 (2000).CrossRefGoogle Scholar
132.Dong, L.X., Nelson, B.J., Fukuda, T., Arai, F., IEEE Tran. Autom. Sci. Eng. 3, 228 (2006).CrossRefGoogle Scholar
133.Deshpande, V.V., Chiu, H.-Y., Postma, H.W.Ch., Miko, C., Forro, L., Bockrath, M., Nano Lett. 6, 1092 (2006).CrossRefGoogle Scholar
134.Garstein, Y.N., Zakhidov, A.A., Baughman, R.H., Phys. Rev. B 68, 115415 (2003).CrossRefGoogle Scholar
135.Gupta, S., Hughes, M., Windle, A.H., Robertson, J., Diamond Relat. Mater. 13, 1314 (2004).CrossRefGoogle Scholar
136.Gupta, S., Diamond Relat. Mater. 15, 378 (2006).CrossRefGoogle Scholar
137.Gao, M., Dai, L., Baughman, R.H., Spinks, G.M., Wallace, G.G., Proc. SPIE 3987, 18 (2000).CrossRefGoogle Scholar
138.Fraysse, J., Minett, A.I., Jaschinski, O., Duesberg, G.S., Roth, S., Carbon 40, 1735 (2002).CrossRefGoogle Scholar
139.Hughes, M., Spinks, G.M., Adv. Mater. 17, 443 (2005)CrossRefGoogle Scholar
140.Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., Do Rossi, D., Khayrullin, I.I., Baughman, R.H., Adv. Mater. 14, 1728 (2002).3.0.CO;2-8>CrossRefGoogle Scholar
141.Barisci, J.N., Wallace, G.G., MacFarlane, D.R., Baughman, R.H., Electrochem. Commun. 6, 22 (2004).CrossRefGoogle Scholar
142.Mirfakhrai, T., Oh, J., Kozlov, M., Fok, E.C.W., Zhang, M., Fang, S., Baughman, R.H., Madden, J.D.W., Smart Mater. Struct. 16, S243 (2007).CrossRefGoogle Scholar
143.Fukushima, T., Asaka, K., Kosaka, A., Aida, T., Angew. Chem. Int. Ed. 44, 2410 (2005).CrossRefGoogle Scholar
144.Vohrer, U., Kolaric, I., Haque, M.H., Roth, S., Detlaff-Weglikowska, U., Carbon 42, 1159 (2004).CrossRefGoogle Scholar
145.Munoz, E., Dalton, A.B., Collins, S., Kozlov, M., Razal, J., Coleman, J.N., Kim, B.G., Ebron, V.H., Selvidge, M., Farraris, J.P., Baughman, R.H., Adv. Eng. Mater. 6, 801 (2004).CrossRefGoogle Scholar
146.Madden, J.D.W., Barisci, J.N., Anquetil, P.A., Spinks, G.M., Wallace, G.G., Baughman, R.H., Hunter, I.W., Adv. Mater. 18, 870 (2006).CrossRefGoogle Scholar
147.Barisci, J.N., Spinks, G.M., Wallace, G.G., Madden, J.D., Baughman, R.H., Smart Mater. Struct. 12, 549 (2003).CrossRefGoogle Scholar
148.Yun, Y., Shanov, V., Tu, Y., Schulz, M.J., Yarmolenko, S., Neralla, S., Sankar, J., Subramaniam, S., Nano Lett. 6, 689 (2006).CrossRefGoogle Scholar
149.Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P., Science 290, 1331 (2000).CrossRefGoogle Scholar
150.Fraysse, J., Minett, A.I., Gu, G., Roth, S., Rinzler, A.G., Baughman, R.H., Curr. Appl. Phys. 1, 407 (2001).CrossRefGoogle Scholar
151.Ebron, V.H., Yang, Z., Seyer, D.J., Kozlov, M.E., Oh, J., Xie, H., Razal, J., Hall, L.J., Ferraris, J.P., MacDiarmid, A.G., Baughman, R.H., Science 311, 1580 (2006).CrossRefGoogle Scholar
152.Madden, J.D., Science 311, 1559 (2006).CrossRefGoogle ScholarPubMed
153.Spinks, G.M., Mottaghitalab, V., Bahrami-Samani, M., Whitten, P.G., Wallace, G.G., Adv. Mater. 18, 637 (2006).CrossRefGoogle Scholar
154.Tahhan, M., Truong, V.-T., Spinks, G.M., Wallace, G.G., Smart Mater. Struct. 12, 626 (2003).CrossRefGoogle Scholar
155.Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., VanDerveer, W., Gennett, T., Nano Lett. 2, 1329 (2002).CrossRefGoogle Scholar
156.Lee, D.Y., Heo, S., Kim, K.J., Kim, D., Lee, M.-H., Lee, S.-J., Bioceramics 17, 733 (2005).Google Scholar
157.Shi, J., Guo, Z.-X., Zhan, B., Luo, H., Li, Y., Zhu, D., J. Phys. Chem. B 109, 14789 (2005).CrossRefGoogle Scholar
158.Spinks, G.M., Shin, S.R., Wallace, G.G., Whitten, P.G., Kim, I.Y., Kim, S.I., Kim, S.J., Sens. Actuators B, Chem. 121, 616 (2007).CrossRefGoogle Scholar
159.Tong, X., Zheng, J., Lu, Y., Zhang, Z., Cheng, H., Mater. Lett. 61, 1704 (2007).CrossRefGoogle Scholar
160.Courty, S., Mine, J., Tajbakhsh, A.R., Terentjev, E.M., Europhys. Lett. 64, 654 (2003).CrossRefGoogle Scholar
161.Yun, S.Y., Kim, J., Ounaies, Z., Smart Mater. Struct. 15, N61 (2006).CrossRefGoogle Scholar
162.Cho, D.B., Suhr, J., Koratkar, N.A., J. Intell. Mater. Syst. Struct. 17, 209 (2006).CrossRefGoogle Scholar
163.Yu, X., Rajamani, R., Stelson, K.A., Cui, T., Sens. Actuators A, Phys. 132, 626 (2006).CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 149 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-54xgk Total loading time: 0.719 Render date: 2021-01-25T17:56:22.949Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *