Skip to main content Accessibility help
×
Home

Article contents

Artificial intelligence for materials discovery

Published online by Cambridge University Press:  12 July 2019

Carla P. Gomes
Affiliation:
Department of Computer Science, Cornell University, USA; gomes@cs.cornell.edu
Bart Selman
Affiliation:
Department of Computer Science, Cornell University, USA; selman@cs.cornell.edu
John M. Gregoire
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, USA; gregoire@caltech.edu
Get access

Abstract

Continued progress in artificial intelligence (AI) and associated demonstrations of superhuman performance have raised the expectation that AI can revolutionize scientific discovery in general and materials science specifically. We illustrate the success of machine learning (ML) algorithms in tasks ranging from machine vision to game playing and describe how existing algorithms can also be impactful in materials science, while noting key limitations for accelerating materials discovery. Issues of data scarcity and the combinatorial nature of materials spaces, which limit application of ML techniques in materials science, can be overcome by exploiting the rich scientific knowledge from physics and chemistry using additional AI techniques such as reasoning, planning, and knowledge representation. The integration of these techniques in materials-intelligent systems will enable AI governance of the scientific method and autonomous scientific discovery.

Type
The Machine Learning Revolution in Materials Research
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Campbell, M., Hoane, A.J., Hsu, F., Artif. Intell. 134, 57 (2002).10.1016/S0004-3702(01)00129-1CrossRefGoogle Scholar
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D., Science 362, 1140 (2018).10.1126/science.aar6404CrossRefGoogle Scholar
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Murdock, W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C., AI Mag . 31, 59 (2010).10.1609/aimag.v31i3.2303CrossRefGoogle Scholar
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D., Nature 529, 484 (2016).10.1038/nature16961CrossRefGoogle Scholar
Bohannon, J., Science 357, 16 (2017).10.1126/science.357.6346.18CrossRefGoogle Scholar
Gil, Y., Greaves, M., Hendler, J., Hirsh, H., Science 346, 171 (2014).10.1126/science.1259439CrossRefGoogle Scholar
De Luna, P., Wei, J., Bengio, Y., Aspuru-Guzik, A., Sargent, E., Nature 552, 23 (2017).10.1038/d41586-017-07820-6CrossRefGoogle Scholar
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C., npj. Comput. Mater. 3, 54 (2017).CrossRefGoogle Scholar
Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R., Maruyama, B., npj. Comput. Mater. 2, 16031 (2016).CrossRefGoogle Scholar
Smalley, E., Nat. Biotechnol. 35, 604 (2017).CrossRefGoogle Scholar
Horvitz, E., Zilberstein, S., Artif. Intell. 126, 1 (2001).10.1016/S0004-3702(01)00051-0CrossRefGoogle Scholar
King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G., Nature 427, 247 (2004).10.1038/nature02236CrossRefGoogle Scholar
Kitchin, J.R., Nat. Catal. 1, 230 (2018).CrossRefGoogle Scholar
Kahneman, D., Thinking, Fast and Slow (Farrar, Straus, and Giroux, New York, 2011).Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E., “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst. 25, Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds. (ACM Publications, New York, 2012), pp. 10971105, http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed April 22, 2019).Google Scholar
Lee, D.D., Seung, H.S., Nature 401, 788 (1999).10.1038/44565CrossRefGoogle Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater . 1, 011002 (2013).10.1063/1.4812323CrossRefGoogle Scholar
Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C., npj Comput. Mater. 1, 15010 (2015).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O., Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
Mansouri Tehrani, A., Oliynyk, A.O., Parry, M., Rizvi, Z., Couper, S., Lin, F., Miyagi, L., Sparks, T.D., Brgoch, J., J. Am. Chem. Soc. 140, 9844 (2018).CrossRefGoogle Scholar
DeCost, B.L., Holm, E.A., Comput. Mater. Sci. 110, 126 (2015).CrossRefGoogle Scholar
Borodinov, N., Neumayer, S., Kalinin, S.V., Ovchinnikova, O.S., Vasudevan, R.K., Jesse, S., npj Comput. Mater. 5, 5 (2019).Google Scholar
Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J., Mehta, A., Sci. Adv. 4, eaaq1566 (2018).CrossRefGoogle Scholar
Segler, M.H.S., Preuss, M., Waller, M.P., Nature 555, 604 (2018).CrossRefGoogle Scholar
Jain, A., Shin, Y., Persson, K.A., Nat. Rev. Mater. 1, 15004 (2016).CrossRefGoogle Scholar
Yan, Q., Yu, J., Suram, S.K., Zhou, L., Shinde, A., Newhouse, P.F., Chen, W., Li, G., Persson, K.A., Gregoire, J.M., Neaton, J.B., Proc. Natl. Acad. Sci. U.S.A. 114, 3040 (2017).CrossRefGoogle Scholar
Ward, L., Agrawal, A., Choudhary, A., Wolverton, C., npj Comput. Mater. 2, 16028 (2016).CrossRefGoogle Scholar
Isayev, O., Oses, C., Toher, C., Gossett, E., Curtarolo, S., Tropsha, A., Nat. Commun. 8, 15679 (2017).CrossRefGoogle Scholar
Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., Tanaka, I., Phys. Rev. B 95, 144110 (2017).CrossRefGoogle Scholar
Snyder, J.C., Rupp, M., Hansen, K., Müller, K.-R., Burke, K., Phys. Rev. Lett. 108, 253002 (2012).CrossRefGoogle Scholar
Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A., Nature 559, 547 (2018).CrossRefGoogle Scholar
Gossett, E., Toher, C., Oses, C., Isayev, O., Legrain, F., Rose, F., Zurek, E., Carrete, J., Mingo, N., Tropsha, A., Curtarolo, S., Comput. Mater. Sci. 152, 134 (2018).CrossRefGoogle Scholar
Ward, L., Dunn, A., Faghaninia, A., Zimmermann, N.E.R., Bajaj, S., Wang, Q., Montoya, J., Chen, J., Bystrom, K., Dylla, M., Chard, K., Asta, M., Persson, K.A., Snyder, G.J., Foster, I., Jain, A., Comput. Mater. Sci. 152, 60 (2018).CrossRefGoogle Scholar
National Academies of Sciences and Medicine, Data Science: Opportunities to Transform Chemical Sciences and Engineering: Proceedings of a Workshop—in Brief (National Academies Press, Washington, DC, 2018).Google Scholar
Hattrick-Simpers, J.R., Gregoire, J.M., Kusne, A.G., APL Mater . 4, 053211 (2016).CrossRefGoogle Scholar
Stein, H.S., Jiao, S., Ludwig, A., ACS Comb. Sci. 19, 1 (2017).CrossRefGoogle Scholar
Stanev, V., Vesselinov, V.V., Kusne, A.G., Antoszewski, G., Takeuchi, I., Alexandrov, B.S., npj Comput. Mater. 4, 43 (2018).CrossRefGoogle Scholar
Ermon, S., Le Bras, R., Suram, S.K., Gregoire, J.M., Gomes, C.P., Selman, B., Van Dover, R.B., “Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery,” Proc. 29th AAAI Conf. Artif. Intell. (AAAI Press, Austin, TX, 2015).Google Scholar
Suram, S.K., Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Zhou, L., van Dover, R.B., Gomes, C.P., Gregoire, J.M., ACS Comb. Sci. 19, 37 (2017).CrossRefGoogle Scholar
Long, C.J., Bunker, D., Li, X., Karen, V.L., Takeuchi, I., Rev. Sci. Instrum. 80, 103902 (2009).CrossRefGoogle Scholar
Sanchez-Lengeling, B., Aspuru-Guzik, A., Science 361, 360 (2018).CrossRefGoogle Scholar
Zhang, Y., Ling, C., npj Comput. Mater. 4, 25 (2018).CrossRefGoogle Scholar
Gershman, S.J., Horvitz, E.J., Tenenbaum, J.B., Science 349, 273 (2015).CrossRefGoogle Scholar
Schmidt, M., Lipson, H., Science 324, 81 (2009).CrossRefGoogle Scholar
Waltz, D., Buchanan, B.G., Science 324, 43 (2009).10.1126/science.1172781CrossRefGoogle ScholarPubMed
Muggleton, S.H., Nature 440, 409 (2006).CrossRefGoogle Scholar
Kocsis, L., Szepesvári, C., “Bandit Based Monte-Carlo Planning,” Proc. Mach. Learn. ECML 2006, Fürnkranz, J., Scheffer, T., Spiliopoulou, M., Eds. (Springer, Berlin, Germany, 2006), pp. 282293.CrossRefGoogle Scholar
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Nature 550 (7676), 354 (2017).CrossRefGoogle Scholar
Kaelbling, L.P., Littman, M.L., Moore, A.W., J. Artif. Intell. Res. (1996), https://arxiv.org/abs/cs/9605103v1 (accessed April 22, 2019).Google Scholar
Sutton, R.S., Barto, A.G., Reinforcement Learning, Second Edition (MIT Press, Cambridge, MA, 2018), https://mitpress.mit.edu/books/reinforcement-learning-second-edition (accessed April 22, 2019).Google Scholar
Sutton, R.S., Barto, A.G., Introduction to Reinforcement Learning (MIT Press, Cambridge, MA, 1998).CrossRefGoogle Scholar
Grisafi, A., Wilkins, D.M., Csányi, G., Ceriotti, M., Phys. Rev. Lett. 120, 036002 (2018).CrossRefGoogle Scholar
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., “Neural Message Passing for Quantum Chemistry,” Proc. 34th Int. Conf. Mach. Learn. 70 (JMLR.org, 2017), pp. 12631272, http://dl.acm.org/citation.cfm?id=3305381.3305512 (accessed April 19, 2019).Google Scholar
Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P., J. Comput. Aided Mol. Des. 30, 595 (2016).CrossRefGoogle Scholar
Welborn, M., Cheng, L., Miller, T.F., J. Chem. Theory Comput. 14, 4772 (2018).CrossRefGoogle Scholar
Gomes, C., Bai, J., Xue, Y., Bjorck, J., Rappazzo, B., Ament, S., Bernstein, R., Kong, S., Suram, S., van Dover, R., Gregoire, J., MRS Commun. (forthcoming).Google Scholar
Roch, L.M., Häse, F., Kreisbeck, C., Tamayo-Mendoza, T., Yunker, L.P.E., Hein, J.E., Aspuru-Guzik, A., Sci. Robot. 3, eaat5559 (2018).CrossRefGoogle Scholar
Tabor, D.P., Roch, L.M., Saikin, S.K., Kreisbeck, C., Sheberla, D., Montoya, J.H., Dwaraknath, S., Aykol, M., Ortiz, C., Tribukait, H., Amador-Bedolla, C., Brabec, C.J., Maruyama, B., Persson, K.A., Aspuru-Guzik, A., Nat. Rev. Mater. 3, 5 (2018).CrossRefGoogle Scholar
Lookman, T., Balachandran, P.V., Xue, D., Yuan, R., npj Comput. Mater. 5, 25 (2019).CrossRefGoogle Scholar
Kusne, A.G., Gao, T., Mehta, A., Ke, L., Nguyen, M.C., Ho, K.-M., Antropov, V., Wang, C.-Z., Kramer, M.J., Long, C., Takeuchi, I., Sci. Rep. 4, 6367 (2014).CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 97
Total number of PDF views: 733 *
View data table for this chart

* Views captured on Cambridge Core between 12th July 2019 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tvlwp Total loading time: 0.308 Render date: 2021-01-19T13:14:12.573Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Artificial intelligence for materials discovery
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Artificial intelligence for materials discovery
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Artificial intelligence for materials discovery
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *