Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:21:25.296Z Has data issue: false hasContentIssue false

Variations in Electric Switching and Transverse Resistance of GeTe/ Sb2Te3 Superlattices at Elevated Temperature Studied by Conductive Scanning Probe Microscopy

Published online by Cambridge University Press:  01 March 2018

Leonid Bolotov*
Affiliation:
Nat. Inst. of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki305-8565Japan
Yuta Saito
Affiliation:
Nat. Inst. of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki305-8565Japan
Tetsuya Tada
Affiliation:
Nat. Inst. of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki305-8565Japan
Junji Tominaga
Affiliation:
Nat. Inst. of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki305-8565Japan
Get access

Abstract

Temperature-dependent variations in electric switching and transverse resistance of phase-change [(GeTe)2(Sb2Te3)]n (n=4 and 8) chalcogenide superlattice (CSL) films were studied using conductive scanning probe microscopy (SPM). Three temperature regions with different electric transport properties were recognized in point current-voltage (I-V) spectra and the surface potential maps measured with tantalum and platinum-coated SPM cantilevers. At around 80°C the switching voltage decreased abruptly from ∼2 V to 0.5 V and the thermal coefficient of resistance changes its sign, indicating different carrier transport mechanisms. The observed changes correlated with decrease in the surface potential by ∼150 meV from 25 to 150°C. The results were ascribed to an opening of the CSL electronic band gap near the Fermi energy caused by thermal stress, which led to the transition from a Dirac-like semimetal to a narrow-gap semiconductor.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Simpson, R.E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., and Tominaga, J., Nat. Nanotachnol. 6, 501505 (2011).Google Scholar
Tominaga, J., Kolobov, A.V., Fons, P., Nakano, T., Murakami, S., Adv. Mater. Interfaces 1, 1300027 (2014).CrossRefGoogle Scholar
Tominaga, J., Simpson, R.E., Fons, P., Kolobov, A.V., Appl. Phys. Lett. 99, 152105 (2011).CrossRefGoogle Scholar
Bolotov, L., Saito, Y., T,Tada, , and Tominaga, J., Scientific Reports 6, 33223 (2016).CrossRefGoogle Scholar
Bolotov, L., Tada, T., Saito, Y. and Tominaga, J., Jpn. J. Appl. Phys. 55, 04EK02 (2016).Google Scholar
Ciocchini, N, Laudato, M., Boniardi, M., Waresi, E., Fantini, P., Lacaita, A.L., and Ielmini, D., Scientific Reports 6, 29162, (2016)CrossRefGoogle Scholar
Mitrofanov, K.V., Saito, Y, Miyata, N, Fons, P, Kolobov, A.V, Tominaga, J, Ext. Abstracts of Int. Conf. on Solid State Devices and Materials 2017, Sendai, Japan, Sept. 19-22, 2017 (A-8-03)Google Scholar
Yu, X. and Robinson, J., Scientific Reports 5, 12612 (2015)Google Scholar
Eremeev, S.V., Rusinov, I.P., Echenique, P.M., and Chulkov, E.V., Scientific Reports 6, 38799 (2016)CrossRefGoogle Scholar
Kim, J., Kim, J., Song, Y.S., Wu, R., Jhi, S.H., Kioussis, N., arXiv preprint arXiv:1702.05579 (Feb.2017)Google Scholar
Wang, C. M., Sun, Hai-Peng, Lu, Hai-Zhou, and Xie, X. C., Phys. Rev. Lett. 119, 136806 (2017)Google Scholar
Landsteiner, K., Phys. Rev. B 89, 075124 (2014)Google Scholar
Saito, Y., Fons, P., Bolotov, L., Miyata, N., Kolobov, A.V., and Tominaga, J., AIP Adv. 6 045220 (2016).Google Scholar
Saito, Y., Fons, P., Kolobov, A.V., and Tominaga, J., Phys. Stat. Solidi (b) 252, 21512158 (2015)Google Scholar
Park, I.M., Jung, J.K., Ryu, S.O., Choi, K.J., Yu, B.G., Park, Y.B., Han, S.M., and Joo, Y.C., Thin Solid Films 517, 848852 (2008)Google Scholar
Saito, Y., Makino, K., Fons, P., Kolobov, A.V., and Tominaga, J., ACS Appl. Mater. Interfaces 9, 2391823925 (2017)Google Scholar