Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T07:25:57.024Z Has data issue: false hasContentIssue false

Ultrathin Colloidal PbS/CdS Core/Shell Nanosheets

Published online by Cambridge University Press:  02 May 2017

Simeen Khan
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA
Zhoufeng Jiang
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA Center of Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403,USA
Shashini M Premathilka
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA Center of Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403,USA
Jianjun Hu
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
Andrey Voevodin
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
Paul J. Roland
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, School of Solar and Advanced Renewable Energy, University of Toledo, Toledo, Ohio 43606, USA
Randy J. Ellingson
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, School of Solar and Advanced Renewable Energy, University of Toledo, Toledo, Ohio 43606, USA
Liangfeng Sun*
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA Center of Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403,USA
*
*(Email: lsun@bgsu.edu)
Get access

Abstract

Emissive PbS/CdS core/shell nanosheets are synthesized using a cation-exchange method. A significant blue-shift of the photoluminescence is observed, indicating a stronger quantum confinement in the PbS core as its thickness is reduced to eight atomic layers. High resolution transmission-electron-microscopy images of the cross-sections of the core/shell nanosheets show atomically sharp interfaces between PbS and CdS. Accurate analysis of the thickness of each layer reveals the relationship between the energy-gap and the thickness in the extremely one-dimensionally confined nanostructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dogan, S., Bielewicz, T., Cai, Y. & Klinke, C. Appl. Phys. Lett. 101, 073102 (2012).Google Scholar
Dogan, S., Bielewicz, T., Lebedeva, V. & Klinke, C. Nanoscale 7, 4875 (2015).Google Scholar
Dasgupta, N. P., Lee, W. & Prinz, F. B. Chem. Mater. 21, 3973 (2009).Google Scholar
Dasgupta, N. P., Lee, Wonyoung, Holme, T. P. & Prinz, F. B. Atomic Layer Deposition of PbS-ZnS quantum wells for high-efficiency solar cells (Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 2009).Google Scholar
Acharya, S., Sarma, D. D., Golan, Y., Sengupta, S. & Ariga, K. J. Am. Chem. Soc. 131, 11282 (2009).CrossRefGoogle Scholar
Schliehe, C. et al. . Science 329, 550 (2010).CrossRefGoogle Scholar
Acharya, S. et al. . Nano Lett. 13, 409 (2013).Google Scholar
Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. J. Am. Chem. Soc. 128, 5632 (2006).CrossRefGoogle Scholar
Ithurria, S. & Dubertret, B. J. Am. Chem. Soc. 130, 16504 (2008).CrossRefGoogle Scholar
Son, J. et al. . Angewandte Chemie International Edition 48, 6861 (2009).Google Scholar
Ithurria, S. et al. . Nature Materials 10, 936 (2011).Google Scholar
van der Ziel, J. P., Dingle, R., Miller, R. C., Wiegmann, W. & Nordland, W. A. Appl. Phys. Lett. 26, 463 (1975).Google Scholar
Yang, J., Son, J. S., Yu, J. H., Joo, J. & Hyeon, T. Chem. Mater. 25, 1190 (2013).Google Scholar
Khan, S. et al. . Chem. Mater. 28, 5342 (2016).Google Scholar
Bhandari, G. B. et al. . Chem. Mater. 26, 5433 (2014).CrossRefGoogle Scholar
Pietryga, J. M. et al. . J. Am. Chem. Soc. 130 , 4879 (2008). CrossRefGoogle Scholar
Moroz, P. et al. . Chem. Mater. 26, 4256 (2014). CrossRefGoogle Scholar
Aerts, M. et al. . Nat Commun 5, 3789 (2014). Google Scholar
Jiang, Z. et al. . Phys. Chem. Chem. Phys. 17, 23303 (2015). Google Scholar
Lechner, R. T. et al. . Chem. Mater. 26, 5914 (2014). Google Scholar
Casavola, M. et al. . Chem. Mater. 24, 294 (2012). Google Scholar
Bouet, C. et al. . Chem. Mater. 26, 3002 (2014). Google Scholar
Bartnik, A. C., Wise, F. W., Kigel, A. & Lifshitz, E. Phys. Rev. B 75, 245424 (2007). Google Scholar
Moreels, I. et al. . ACS Nano 3, 3023 (2009).Google Scholar