Skip to main content Accessibility help

Transmittance and Absorption Properties of Graphene Multilayer Quasi-periodic Structure: Period-Doubling case

  • C. Sifuentes-Gallardo (a1), I. A. Sustaita-Torres (a1), I. Rodríguez-Vargas (a2), J. R. Suárez-López (a2) and J. Madrigal-Melchor (a2)...


Graphene is a two dimensional material of special interest due to its unusual electronic, mechanical, chemical, optical among other properties, which suggest a wide range of applications in optoelectronics, computer, ecology, etc. The study of the optical properties of graphene is important due to its potential applications such as ultrafast photonics, optical filters, composite materials, photovoltaics and energy storage device. In this work we study the transmission and absorption properties of a quasi-regular multilayer dielectric-graphene-dielectric system. The multilayer structure is built on the quasi-regular Period-Doubling (PD) sequence. The optical response of graphene takes into account intra-band and inter-band transitions. We use the transfer-matrix method to calculate the transmission and absorption spectra. It is obtained a strong dependence on the number of layers in the system, the width of dielectric media and the optical contrast. Furthermore, we calculate the spectra for both transverse magnetic (TM) and transverse electric (TE) polarization in the infrared region.


Corresponding author


Hide All
1. C.-N.N, M.., et al. ., Reviews of Modern Physics, 2009. 81(1): p. 109162.
2. Geim, A.K., Science, 2009. 324(June): p. 15301535.
3. Yeh, P., Optical Waves in Layered Media. New Yersey: John Wiley & Sons, Inc 2005.
4. Bonaccorso, F., et al. ., Nature Photonics, 2010. 4(9): p. 611622.
5. Sensale-Rodriguez, B., Journal of Lightwave Technology, 2015. 33(5): p. 11001108.
6. Nair, R.R., et al. ., Science, 2008. 320: p. 1308.
7. Rainis, D., et al. ., Physical Review B - Condensed Matter and Materials Physics, 2009. 79: p. 115131.
8. Falkovsky, L.A. and Pershoguba, S.S., Physical Review B - Condensed Matter and Materials Physics, 2007. 76(15): p. 153410-1153410-4.
9. Jablan, M., Soljačić, M., and Buljan, H., Proceedings of the IEEE, 2013. 101(7): p. 16891704.
10. Grigorenko, A.N., Polini, M., and Novoselov, K.S., Nature Photonics, 2012. 6(11): p. 749758.
11. Bao, Q. and Loh, K.P., ACS Nano, 2012. 6(5): p. 36773694.
12. Tang, Q., et al. ., Angewandte Chemie - International Edition, 2016. 55: p. 52435246.
13. Wang, X., Zhi, L.J., and Mullen, K., Nano letters, 2008. 8: p. 323327.
14. Sung, Y.M., et al. ., J. Mater. Chem. C, 2016. 4(3): p. 513520.
15. Amir, M.S., Physica B, 2014. 431: p. 15.
16. Dal Negro, L., Optics of Aperiodic Structurs, Fundamentals and Devices Applications. Pan Stanford Publishing Vol. 1. 2014.
17. Maciá, E., Reports on Progress in Physics, 2005. 69(2): p. 397441.
18. Rodríguez-Arellano, G., et al. ., Transmission properties of multilayered Period Doubling and Silver-Mean graphene structures G. Mater. Res. Soc. Symp. Proc. Vol., 2012. 1371: p. 2531.
19. R.-A, G.., et al. ., Conductance Properties of Multilayered Silver-Mean and Period-Doubling Graphene Structures. Mater. Res. Soc. Symp. Proc. Vol., 2012. 1479: p. 17.
20. Agarwal, V., Mora, R.M.E., and Alvarado, T.B., Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures. Photonics and Nanostructures – Fundamentals and Applications, 2008. 7: p. 6368, Elsevier.
21. Alvarado, T.B., et al. ., Journal of Nano Research, 2009. 5: p. 6978.
22. Bouazzi, Y. and Kanzari, M., Advanced Electromagnetics, 2012. 1(3): p. 16.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed