Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T18:57:55.062Z Has data issue: false hasContentIssue false

Transition Metal Dichalcogenide Nanoantennas Lattice

Published online by Cambridge University Press:  17 September 2019

Viktoriia E. Babicheva*
Affiliation:
University of New Mexico, Albuquerque, NM
*
*email: vbb@unm.edu
Get access

Abstract

High-index materials such as silicon and III-V compounds have recently gained a lot of interest as a promising material platform for efficient photonic nanostructures. Because of the high refractive index, nanoparticles of such materials support Mie resonances and enable efficient light control and its confinement at the nanoscale. Here we propose a design of nanostructure with multipole resonances where optical nanoantennas are made out of transition metal dichalcogenide, in particular, tungsten disulfide WS2. Transition metal dichalcogenide (TMDCs) possess a high refractive index and strong optical anisotropy because of their layered structure and are promising building blocks for next-generation photonic devices. Strong anisotropic response results in different components of TMDC permittivity and the possibility of tailoring nanostructure optical properties by choosing different axes and adjusting dimensions in design. The proposed periodic array of TMDC nanoantennas can be used for controlling optical resonances in the visible and near-infrared spectral ranges and engineering efficient ultra-thin optical components with nanoscale light confinement.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Evlyukhin, A. B., Reinhardt, C., Seidel, A., Luk’yanchuk, B. S., Chichkov, B. N., Phys. Rev. B 82(4), 045404 (2010).CrossRefGoogle Scholar
Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., Chichkov, B. N., Nano Lett. 12(7), 37493755 (2012).CrossRefGoogle Scholar
Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., Kivshar, Y. S., Opt. Express 20, 20599 (2012).CrossRefGoogle Scholar
Zywietz, U., Evlyukhin, A. B., Reinhardt, C., Chichkov, B. N., Nature Commun. 5, Article #: 3402 (2014).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Laser & Photonics Reviews 12, 1800267 (2019).CrossRefGoogle Scholar
Shcherbakov, M. R., Liu, S., Zubyuk, V. V., Vaskin, A., Vabishchevich, P. P., Keeler, G., Pertsch, T., Dolgova, T. V., Staude, I., Brener, I., Fedyanin, A. A., "Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces," Nature Communications 8, 17 (2017).CrossRefGoogle ScholarPubMed
Babicheva, V. E. and Evlyukhin, A.B., MRS Communications 8, 712-717 (2018).CrossRefGoogle Scholar
Kuznetsov, A. I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B., Science 354, aag2472 (2016).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 4, 713-722 (2019).CrossRefGoogle Scholar
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., Luk’yanchuk, B., Nat. Commun. 4, 1527 (2013).CrossRefGoogle Scholar
Person, S., Jain, M., Lapin, Z., Sáenz, J. J., Wicks, G., Novotny, L., Nano Lett. 13(4), 1806 (2013).CrossRefGoogle Scholar
Staude, I., Miroshnichenko, A. E., Decker, M., Fofang, N. T., Liu, S., Gonzales, E., Dominguez, J., Luk, T. S., Neshev, D. N., Brener, I., Kivshar, Y., ACS Nano 7, 78247832 (2013).CrossRefGoogle Scholar
Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D. N., Brener, I., Pertsch, T., Kivshar, Y. S., Adv. Opt. Mater. 3, 813820 (2015).CrossRefGoogle Scholar
Babicheva, V. E., Petrov, M., Baryshnikova, K., Belov, P., Journal of the Optical Society of America B 34, D18-D28 (2017).CrossRefGoogle Scholar
Yang, C. Y., Yang, J. H., Yang, Z. Y., Zhou, Z. X., Sun, M. G., Babicheva, V. E., Chen, K. P., ACS Photonics 5, 2596 (2018).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Nanophotonics 7, 1663-1668 (2018).CrossRefGoogle Scholar
Babicheva, V. E., MRS Communications 8, 1455-1462 (2018).CrossRefGoogle Scholar
Jahani, S. and Jacob, Z., Nature Nanotechnology 11, 2336 (2016).CrossRefGoogle Scholar
Staude, I. and Schilling, J., Nature Photonics 11, 274284 (2017).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 3, 1913 (2018).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 3, 2783-2788 (2018).CrossRefGoogle Scholar
Abate, Y., Gamage, S., Zhen, L., Cronin, S.B., Wang, H., Babicheva, V., Javani, M.H., Stockman, M.I., Light: Science & Applications 5, e16162 (2016).CrossRefGoogle Scholar
Babicheva, V. E., "Multipole resonances and directional scattering by hyperbolic-media antennas," arxiv.org/abs/1706.07259, accessed on September 4, 2019.Google Scholar
Boulesbaa, A., Babicheva, V.E., Wang, K., Kravchenko, I.I., Lin, M.-W., Mahjouri-Samani, M., Jacob, C., Puretzky, A.A., Xiao, K., Ivanov, I., Rouleau, C.M., Geohegan, D.B., ACS Photonics 3, 23892395 (2016).CrossRefGoogle Scholar
Babicheva, V. E., Gamage, S., Zhen, L., Cronin, S. B., Yakovlev, V. S., Abate, Y., "Near-field Surface Waves in Few-Layer MoS2," ACS Photonics 5, 2106 (2018).CrossRefGoogle Scholar
Boltasseva, A. and Shalaev, V. M., ACS Photonics 6, 1-3 (2019).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Applied Sciences 9, 2005 (2019).CrossRefGoogle Scholar
Dong, R. and Kuljanishvili, I., J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 35, 030803 (2017).CrossRefGoogle Scholar
Beal, A. R., Liang, W. Y., and Hughes, H. P., J. Phys. C: Solid State Phys. 9, 2449 (1976).CrossRefGoogle Scholar