Skip to main content Accessibility help

Time-domain Brillouin Scattering as a Local Temperature Probe in Liquids

  • Ievgeniia Chaban (a1) (a2), Hyun D. Shin (a3), Christoph Klieber (a3), Rémi Busselez (a1), Vitaly Gusev (a2), Keith Nelson (a3) and Thomas Pezeril (a1)...


We present results of time-domain Brillouin scattering (TDBS) to determine the local temperature of liquids. TDBS is based on an ultrafast pump-probe technique to determine the light scattering frequency shift caused by the propagation of coherent acoustic waves in a sample. Since the temperature influences the Brillouin scattering frequency shift, the TDBS signal probes the local temperature of the liquid. Results for the extracted Brillouin scattering frequencies recorded at different liquid temperatures and at different laser powers are shown to demonstrate the usefulness of TDBS as a temperature probe.


Corresponding author



Hide All
[1]Cahill, D., Rev. Sci. Instrum. 75, 5119 (2004).
[2]Schmidt, A., Chiesa, M., Chen, X., Chen, G., Rev. Sci. Instrum. 79, 064902 (2008).
[3]Cahill, D., Braun, P., Chen, G., Clarke, D. R., Fan, S., Goodson, K., Keblinski, P., King, W., Mahan, G., Majumdar, A., Maris, H., Phillpot, S., Pop, E., Shi, L., Appl. Phys. Rev. 1, 011305 (2014).
[4]Schmidt, A., Cheaito, R., Chiesa, M., Rev. Sci. Instrum. 80, 094901 (2009).
[5]Lin, H. N., Stoner, R. J., Maris, H. J., Tauc, J., J. Appl. Phys. 69, 3816 (1991).
[6]Klieber, C., Pezeril, T., Gusev, V., Nelson, K. A., Phys. Rev. Lett. 114, 065701 (2015).
[7]Bojahr, A., Herzog, M., Schick, D., Vrejoiu, I., and Bargheer, M., Phys. Rev. B 86, 144306 (2012).
[8]Mechri, C., Ruello, P., Breteau, J.-M., Baklanov, M., Verdonck, P., Gusev, V., Appl. Phys. Lett. 95, 091907 (2009).
[9]Nikitin, S., Chigarev, N., Tournat, V., Bulou, A., Gasteau, D., Castagnede, B., Zerr, A., Gusev, V., Scientific reports 5, 9352 (2015).
[10]Pezeril, T., Klieber, C., Andrieu, S., Nelson, K. A., Phys. Rev. Lett. 102, 107402 (2009).
[11]Klieber, C., Hecksher, T., Pezeril, T., Torchinsky, D. H., Dyre, J. C., and Nelson, K. A., J. Chem. Phys. 138, 12A544 (2013).
[12]Pezeril, T., Opt. & Laser Tech. 83, 177 (2016).
[13]Klieber, C., Ph.D. Thesis,, MIT (2010).
[14]Shelton, L., Yang, F., Ford, W. K., and Maris, H. J., Phys. Stat. Sol. 242, 1379 (2005).
[15]Maznev, A., Manke, K., Klieber, C., Nelson, K. A., Baek, S., Eom, C., Opt. Lett. 36, 2925 (2011).
[16]Chaban, I., Shin, D., Klieber, C., Busselez, R., Gusev, V., Nelson, K. A., and Pezeril, T., Rev. of Sci. Instrum. 88, 074904 (2017).
[17]Christenson, H. K., Horn, R. G., Israelachvili, J. N., J. Colloid Interface Sci. 88, 79 (1982).
[18]Heuberger, M., Zach, M., Spencer, N., Science 292, 905 (2001).
[19]Perkin, S., Phys. Chem. Chem. Phys. 14, 5052 (2012).
[20]Cahill, D., Ford, W., Goodson, K., Mahan, G., Majumdar, A., Maris, H., Merlin, R., J. Appl. Phys. 93, 793 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed