Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:02:09.264Z Has data issue: false hasContentIssue false

A Three Dimensional Unit Cell Model for the Analysis of Thermal Residual Stresses in Polymer Composites Reinforced with Wavy Carbon Nanotubes

Published online by Cambridge University Press:  29 November 2019

Y. Zhang*
Affiliation:
National Research Council Canada, 1200 Montreal Road, Ottawa ON, Canada K1A 0R6
A. Johnston
Affiliation:
National Research Council Canada, 1200 Montreal Road, Ottawa ON, Canada K1A 0R6
A. Yousefpour
Affiliation:
National Research Council Canada, 1200 Montreal Road, Ottawa ON, Canada K1A 0R6
J. Guan
Affiliation:
National Research Council Canada, 1200 Montreal Road, Ottawa ON, Canada K1A 0R6
B. Simard
Affiliation:
National Research Council Canada, 1200 Montreal Road, Ottawa ON, Canada K1A 0R6
C. Kingston
Affiliation:
National Research Council Canada, 1200 Montreal Road, Ottawa ON, Canada K1A 0R6
Get access

Abstract

This paper presents a numerical approach to predict the thermal residual stresses in polymer nanocomposites reinforced with a periodic array of wavy carbon nanotubes. A three dimensional unit cell model is established to accurately account for the waviness of the nanotube. Periodic boundary conditions are determined for the unit cell with a pair of curved surfaces. Appropriate methods to evaluate the macroscopic stresses and strains are also determined for the unit cell model in which the interior pores of the nanotubes are explicitly included. It is demonstrated that the macroscopic behavior of the nanocomposites is orthotropic due to the symmetries manifested. By employing material properties of the two constituents, the thermal residual stresses and strains induced by high temperature curing and cooling-down are predicted for an epoxy/wavy-nanotube composite. It is also demonstrated that the curing process tends to increase the waviness of the nanotube and the waviness has a significant influence on the distribution of the microscopic residual stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moniruzzaman, M. and Winey, K.I.. Macromolecules, 39, 5194-5205(2006).CrossRefGoogle Scholar
Gibson, R.F.. Compos. Struct. 92, 2793-2810(2010).CrossRefGoogle Scholar
Fraser, R.A., Stoeffler, K., Ashrafi, B., Zhang, Y.F. and Simard, B.. ACS Appl. Mater. Inter. 4, 1990-1997(2012).CrossRefGoogle Scholar
Dastgerdi, J.N., Marquis, G. and Salimi, M.. Compos. Sci. Technol. 86, 164-169(2013).CrossRefGoogle Scholar
Tsai, C.H., Zhang, C., Jack, D.A., Liang, R. and Wang, B.. Compos. Part-B: Eng. 42, 62-70(2011).CrossRefGoogle Scholar
Anumandla, V. and Gibson, R.F.. Compos. Part-A: Appl. Sci. Manuf. 37, 2178-2185(2006).CrossRefGoogle Scholar
Hassanzadeh-Aghdam, M.K., Ansari, R. and Darvizeh, A.. J. Compos. Mater. 51, 2899-2912(2017).CrossRefGoogle Scholar
Hsiao, H.M. and Daniel, I.M.. Compos. Part-A: Appl. Sci. Manuf. 27, 931-941(1996).CrossRefGoogle Scholar
Michel, J., Moulinec, H. and Suquet, P.. Comput. Methods Appl. Mech. Engrg. 172, 109- 143(1999).CrossRefGoogle Scholar
Ohno, N., Ikenoya, K., Okumura, D. and Matsuda, T.. Int. J. Solids Struct. 49, 2799-2806 (2012).CrossRefGoogle Scholar
Xia, Z., Zhang, Y. and Ellyin, F.. Int. J. Solids Struct. 40, 1907-1921(2003).CrossRefGoogle Scholar
Fisher, F.T., Bradshaw, R.D. and Brinson, L.C.. Compos. Sci. Technol. 63, 1689-1703(2003).CrossRefGoogle Scholar
Paunikar, S. and Kumar, S.. Comput. Mater. Sci. 95, 21-28(2014).CrossRefGoogle Scholar
Farsadi, M., Ochsner, A. and Rahmandoust, M.. J. Compos. Mater. 47, 1425-1434(2013).CrossRefGoogle Scholar
Hsiao, H.M. and Daniel, I.M.. Compos. Sci. Technol. 56, 581-593(1996).CrossRefGoogle Scholar
Garnich, M.R. and Karami, G.. J. Compos. Mater. 38, 273-292(2004).CrossRefGoogle Scholar
Zhang, Y. and Xia, Z.. CMC-Comput. Mater. Con. 2, 213-226(2005).Google Scholar
Zhang, Y., Xia, Z. and Ellyin, F.. Compos. Sci. Technol. 64, 1613-1621(2004).CrossRefGoogle Scholar
Luciano, R. and Sacco, E.. Eur. J. Mech. A-Solid. 17, 599-617(1998).CrossRefGoogle Scholar
Zhang, Y., Xia, Z. and Ellyin, F.. Int. J. Solids Struct. 45, 5322-5336(2008).CrossRefGoogle Scholar
Deng, L., Young, R.J., Kinloch, I.A., Sun, R., Zhang, G., Noé, L. and Monthioux, M.. Appl. Phys. Lett. 104, 051907(2014).CrossRefGoogle Scholar