Skip to main content Accessibility help
×
Home

Thermoelectric Performance Study of Graphene Antidot Lattices on Different Substrates

  • Qing Hao (a1), Dongchao Xu (a1), Ximena Ruden (a2), Brian LeRoy (a2) and Xu Du (a3)...

Abstract

Pristine graphene has low thermoelectric performance due to its ultra-high thermal conductivity and a low Seebeck coefficient, the latter of which results from the zero-band gap of graphene. To improve the thermoelectric performance of graphene-based materials, various methods have been proposed to open a band gap in graphene. Graphene antidot lattices is one of the most effective methods to reach this goal by patterning periodic nano- or sub-1-nm pores (antidots) across graphene. In high-porosity graphene antidot lattices, charge carriers mainly flow through the narrow necks between pores, forming a comparable case as graphene nanoribbons. This will open a geometry-dependent band gap and dramatically increase the Seebeck coefficient. The antidots also strongly scatter phonons, leading to a dramatically reduced lattice thermal conductivity to further enhance the thermoelectric performance. In computations, the thermoelectric figure of merit of a graphene antidot lattices was predicted to be around 1.0 at 300 K but experimental validation is still required. The electrical conductivity and Seebeck coefficient of graphene antidot lattices on various substrates including SiO2, SiC and hexagonal boron nitride were measured. The antidots were drilled with a focused ion beam or reactive ion etching.

Copyright

Corresponding author

References

Hide All
1. Goldsmid, H. J., Thermoelectric Refrigeration. (Plenum, New York, 1964).
2. Yang, J. and Stabler, F. R., Journal of Electronic Materials 38 (7), 12451251 (2009).
3. Kraemer, D., Poudel, B., Feng, H. P., Caylor, J. C., Yu, B., Yan, X., Ma, Y., Wang, X., Wang, D., Muto, A., McEnaney, K., Chiesa, M., Ren, Z. and Chen, G., Nature Materials 10 (7), 532538 (2011).
4. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I. and Firsov, A., Science 306 (5696), 666-669 (2004).
5. Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S. and Firsov, A., Nature 438 (7065), 197-200 (2005).
6. Jariwala, D., Srivastava, A. and Ajayan, P. M., Journal of Nanoscience and Nanotechnology 11 (8), 66216641 (2011).
7. Yan, Y., Liang, Q.-F., Zhao, H., Wu, C.-Q. and Li, B., Physics Letters A 376 (35), 24252429 (2012).
8. Karamitaheri, H., Pourfath, M., Faez, R. and Kosina, H., Journal of Applied Physics 110 (5), 054506 (2011).
9. Gunst, T., Markussen, T., Jauho, A.-P. and Brandbyge, M., Physical Review B 84 (15), 155449 (2011).
10. Gunst, T., Jing-Tao, L., Markussen, T., Jauho, A. and Brandbyge, M., presented at the 2012 15th International Workshop on Computational Electronics (IWCE), Madison, USA, 2012 (unpublished).
11. Wu, D., Yu, Z., Xiao, J. and Ouyang, F., Physica E: Low-dimensional Systems and Nanostructures 43 (1), 3339 (2010).
12. Zhang, H., Guo, Z.-X., Zhao, W., Gong, X. and Cao, J., Journal of the Physical Society of Japan 81 (11), 114601 (2012).
13. Robillard, J., Muralidharan, K., Bucay, J., Deymier, P., Beck, W. and Barker, D., Chinese Journal of Physics 49, 448461 (2011).
14. Grosse, K. L., Bae, M.-H., Lian, F., Pop, E. and King, W. P., Nature Nanotechnology 6 (5), 287290 (2011).
15. Oh, J., Yoo, H., Choi, J., Kim, J. Y., Lee, D. S., Kim, M. J., Lee, J.-C., Kim, W. N., Grossman, J. C., Park, J. H., Lee, S.-S., Kim, H. and Son, J. G., Nano Energy 35, 2635 (2017).
16. Zhu, W., Low, T., Perebeinos, V., Bol, A. A., Zhu, Y., Yan, H., Tersoff, J. and Avouris, P., Nano Letters 12 (7), 34313436 (2012).
17. Sandner, A., Preis, T., Schell, C., Giudici, P., Watanabe, K., Taniguchi, T., Weiss, D. and Eroms, J., Nano Letters 15 (12), 84028406 (2015).
18. Yagi, R., Sakakibara, R., Ebisuoka, R., Onishi, J., Watanabe, K., Taniguchi, T. and Iye, Y., Physical Review B 92 (19), 195406 (2015).
19. Goldsmid, H. J., Introduction to Thermoelectricity. (Springer, Berlin, 2010).

Keywords

Thermoelectric Performance Study of Graphene Antidot Lattices on Different Substrates

  • Qing Hao (a1), Dongchao Xu (a1), Ximena Ruden (a2), Brian LeRoy (a2) and Xu Du (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed