Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T05:13:31.059Z Has data issue: false hasContentIssue false

Thermal decomposition and chemical vapor deposition: a comparative study of multi-layer growth of graphene on SiC(000-1)

Published online by Cambridge University Press:  18 May 2016

D. Convertino
Affiliation:
Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy Laboratorio NEST – Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
A. Rossi
Affiliation:
Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy Laboratorio NEST – Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
V. Miseikis
Affiliation:
Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
V. Piazza
Affiliation:
Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
C. Coletti*
Affiliation:
Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
Get access

Abstract

This work presents a comparison of the structural, chemical and electronic properties of multi-layer graphene grown on SiC(000-1) by using two different growth approaches: thermal decomposition and chemical vapor deposition (CVD). The topography of the samples was investigated by using atomic force microscopy (AFM), and scanning electron microscopy (SEM) was performed to examine the sample on a large scale. Raman spectroscopy was used to assess the crystallinity and electronic behavior of the multi-layer graphene and to estimate its thickness in a non-invasive way. While the crystallinity of the samples obtained with the two different approaches is comparable, our results indicate that the CVD method allows for a better thickness control of the grown graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

First, P., de Heer, A., Seyller, Th., Berger, C., Stroscio, J.A. and Moon, J.S., MRS Bull. 35, 296305 (2010).Google Scholar
Starke, U., Forti, S., Emtsev, K.V. and Coletti, C., MRS Bull. 37, 1177–86 (2012).Google Scholar
Strupinski, W., Grodecki, K., Wysmolek, A., Stepniewski, R., Szkopek, T., Gaskell, P.E., Grüneis, A., Haberer, D., Bozek, R., Krupka, J. and Baranowski, J.M., Nano Lett. 11 (4), 1786-1791 (2011).CrossRefGoogle Scholar
Frewin, C.L., Coletti, C., Riedl, C., Starke, U. and Saddow, S.E., Mater. Sci. Forum 615–617, 589592 (2009).Google Scholar
Emtsev, K.V., Speck, F., Seyller, Th., Ley, L. and Riley, J.D., Phys. Rev. B 77, 155303 (2008).Google Scholar
Candini, A., Richter, N., Convertino, D., Coletti, C., Balestro, F., Wernsdorfer, W., Kläui, M. and Affronte, M., Beilstein J. Nanotechnol. 6, 711719 (2015).Google Scholar
de Heer, A, Berger, C., Ruana, M., Sprinklea, M., Lia, X., Hua, Y., Zhanga, B., Hankinsona, J. and Conrad, E., PNAS 108 (41), 16900-16905 (2011).CrossRefGoogle Scholar
Prakash, G., Capano, M.A., Bolen, M.L., Zemlyanov, D. and Reifenberger, R.G., Carbon 48 (9), 23832393, (2010).Google Scholar
Johansson, L.I., Watcharinyanon, S., Zakharov, A.A, Iakimov, T., Yakimova, R. and Virojanadara, C., Phys. Rev. B 84 (12), 125405 (2011).Google Scholar
Razado-Colambo, I., Avila, J., Chen, C., Nys, J.-P., Wallart, X., Asensio, M.-C. and Vignaud, D., Phys. Rev. B 92, 035105 (2015).Google Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E., First, P. and de Heer, A., Science 312 (5777), 1191-1196 (2006).Google Scholar
Shivaraman, S., Chandrashekhar, M.V.S., Boeckl, J.J. and Spenceret, M.G., J. Electron. Mater. 38(6), 725730 (2009).Google Scholar
Burton, J.C., Sun, L., Long, F.H., Feng, Z.C. and Ferguson, I.T., Phys. Rev. B 59 (11), 7282 (1999).Google Scholar
Faugeras, C., Nerrière, A., Potemski, M., Mahmood, A., Dujardin, E., Berger, C. and de Heer, A., Appl. Phys. Lett. 92 (1), 011914 (2008).Google Scholar
Bianco, F., Miseikis, V., Convertino, D., Xu, J., Castellano, F., Beere, H.E., Ritchie, D.A., Vitiello, M.S., Tredicucci, A. and Coletti, C., Optics Express 23 (9), 11632-11640 (2015).Google Scholar