Skip to main content Accessibility help

Theoretical and experimental investigation of point defects in cubic boron nitride

  • Nicholas L. McDougall (a1), Jim G. Partridge (a1), Desmond W. M. Lau (a2), Philipp Reineck (a2), Brant C. Gibson (a2), Takeshi Ohshima (a3) and Dougal G. McCulloch (a1)...


Cubic boron nitride (cBN) is a synthetic wide band gap material that has attracted attention due to its high thermal conductivity, optical transparency and optical emission. In this work, defects in cBN have been investigated using experimental and theoretical X-ray absorption near edge structure (XANES). Vacancy and O substitutional defects were considered, with O substituted at the N site (ON) to be the most energetically favorable. All defects produce unique signatures in either the B or N K-edges and can thus be identified using XANES. The calculations coupled with electron-irradiation / annealing experiments strongly suggest that ON is the dominant defect in irradiated cBN and remains after annealing. This defect is a likely source of optical emission in cBN.


Corresponding author


Hide All
1. Zhang, W. J., Chong, Y. M., Bello, I. and Lee, S. T., J. Phys. D. 40, 20 (2007).
2. Mishima, O., Era, K., Tanaka, J. and Yamaoka, S., Appl. Phys. Lett. 53, 11, (1988).
3. Mohammad, S. N., Solid-State Electron. 46, 2 (2002).
4. Watanabe, K., Taniguchi, T. and Kanda, H., Phys. Status Solidi A. 201, 11 (2004).
5. Krasheninnikov, A. V. and Nordlund, K., J. Appl. Phys. 107, 7 (2010).
6. Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. 251 (1997).
7. Davies, G., Lawson, S. C., Collins, A. T., Mainwood, A. and Sharp, S. J., Phys. Rev. B. 46, 20 (1992).
8. Jelezko, F. and Wrachtrup, J., Phys. Status Solidi A. 203, 13 (2006).
9. Shishonok, E. M. and Steeds, J. W., Diam. Relat. Mater. 11, 10 (2002).
10. Erasmus, R. M. and Comins, J. D., Phys. Status Solidi C. 1, 9 (2004).
11. Zaitsev, A. M., Melnikov, A. A., Shiplo, V. B. and Shishonok, E. M., Phys. Status Solidi A. 94, 2 (1986).
12. Shishonok, E. M. and Steeds, J. W., Phys. Solid State. 46, 6 (2004).
13. Stöhr, J., in NEXAFS Spectroscopy, (Springer-Verlag: New York, 1992) p. 5.
14. Ravel, B. and Newville, M., J. Synchrotron Radiat. 12 (2005).
15. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. and Payne, M. C., Z. Kristallogr. 220, 56 (2005).
16. Gao, S. P., Pickard, C. J., Perlov, A. and Milman, V., J. Phys.-Condens Mat. 21, 10 (2009).
17. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B. 13, 12 (1976).
18. McCulloch, D. G., Lau, D. W. M., Nicholls, R. J. and Perkins, J. M., Micron, 43, 1 (2012).
19. Morris, A. J., Nicholls, R. J., Pickard, C. J. and Yates, J. R., Comput. Phys. Commun. 185, 5 (2014).
20. Yates, J. R., Wang, X. J., Vanderbilt, D. and Souza, I., Phys. Rev. B. 75, 19 (2007).
21. Stöhr, J., in NEXAFS Spectroscopy, (Springer-Verlag: New York, 1992) p. 23.
22. Li, Y. B., Cheng, T. Y., Wang, X., Jiang, H. X., Yang, H. S. and J.Nose, K., J. Appl. Phys. 116, 4 (2014).
23. McDougall, N. L., Nicholls, R. J., Partridge, J. G. and McCulloch, D. G., Microsc. Microanal. 20, 4 (2014).
24. Peter, R., Bozanic, A., Petravic, M., Chen, Y., Fan, L. J. and Yang, Y. W., J. Appl. Phys. 106, 8 (2009).
25. MacNaughton, J. B., Moewes, A., Wilks, R. G., Zhou, X. T., Sham, T. K., Taniguchi, T., Watanabe, K., Chan, C. Y., Zhang, W. J., Bello, I., Lee, S. T. and Hofsass, H., Phys. Rev. B. 72, 19 (2005).
26. Li, D., Bancroft, G. M. and Fleet, M. E., J. Electron Spectrosc. 79 (1996).
27. Orellana, W. and Chacham, H., Phys. Rev. B. 63, 12 (2001).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed