Skip to main content Accessibility help
×
Home

Synthesis and Characterization of Carbon Fiber Based Porous CNTs-RGO/BDD for Application as Microelectrodes

  • Amanda Araújo Silva (a1), Romário Araújo Pinheiro (a1), Cláudia do Amaral Razzino (a2), André Contin (a1), Vladimir Jesus Trava-Airoldi (a1) and Evaldo José Corat (a1)...

Abstract

Microelectrodes have attracted great interest for electroanalysis because of their unique properties, such as nonlinear diffusion, increased rate of mass transport and reduced capacitance, which allows a fast response. In this work, we created a porous nanocomposite of boron doped diamond (BDD) deposited on carbon nanotubes – reduced graphene oxide (CNTs – RGO) by Hot Filament Chemical Vapor Deposition (HFCVD) technique. The resulting material yielded porous BDD microelectrodes. On the first step, we have grown the CNTs on carbon fiber (CF) surface by Thermal CVD in a tubular reactor. Camphor solution and Fe-Co were carbon and catalyst source, respectively. For exfoliation, CNTs were treated by hydrogen plasma and oxygen plasma. We applied a seeding solution containing nanodiamond dispersed in KCl aqueous solution. Diamond nanoparticles interact with oxygen-containing groups on CNTs, promoting an efficient seeding. We deposited BDD films in an HFCVD reactor using methane/hydrogen gas mixtures. For doping, a partial hydrogen flow bubbled in a closed vessel containing a solution of boron oxide dissolved in methanol. The microelectrodes were characterized by Raman Scattering Spectroscopy, Scanning Electron Microscopy with Field Emission Gun and Cyclic Voltammetry. The crystalline quality of CNTs and BDD doping level were studied by Raman analysis. SEM micrographs showed that nanocomposite presented high porosity. Electrochemical analysis showed that the deposition of BDD on CNTs-RGO increased the electrochemical response of the microelectrode. Besides, this electrode presented a low capacitive current in comparison with BDD grown on flat substrates. Further, the porous BDD nanocomposite showed itself to be promising in electroanalysis.

Copyright

Corresponding author

References

Hide All
[1] Forster, R.J., Chem. Soc. Rev., 23, 289 (1994).
[2] Dutta, G., Siddiqui, S., Zeng, H., Carlisle, J.A., and Arumugam, P.U., J. Electroanal. Chem., 756, 6168 (2015).
[3] Khalifa, A., Gao, Z., Bermak, A., Wang, Y., and Hang Chan, L.L., Sens. Bio-Sensing Res., (2015).
[4] Huffman, M.L. and Venton, B.J., (n.d.).
[5] Park, J., Kwon, S., Jun, S.I., Mcknight, T.E., V Melechko, A., Simpson, M.L., Dhindsa, M., Heikenfeld, J., and Rack, P.D., {IEEE} Electron Device Lett., 30, 254257 (2009).
[6] Mahé, E., Devilliers, D., and Dardoize, F., Talanta, 132, 641647 (2015).
[7] Ng, A.M.H., Kenry, C. Lim, Teck, Low, H.Y., and Loh, K.P., Biosens. Bioelectron., 65, 265273 (2015).
[8] Zanin, H., May, P.W., Fermin, D.J., Plana, D., Vieira, S.M.C., Milne, W.I., and Corat, E.J., Am. Chem. Soc. Appl. Mater. Interfaces, 6, 990995 (2014).
[9] Yang, C., Jacobs, C.B., Nguyen, M.D., Ganesana, M., Zestos, A.G., Ivanov, I.N., Puretzky, A.A., Rouleau, C.M., Geohegan, D.B., and Venton, B.J., Anal. Chem., 88, 645652 (2016).
[10] Mohammadi, S., Kolahdouz, Z., and Mohajerzadeh, S., J. Mater. Chem. C, 1, 1309 (2013).
[11] Edwards, E.R., Antunes, E.F., Botelho, E.C., Baldan, M.R., and Corat, E.J., Appl. Surf. Sci., 258, 641648 (2011).
[12] Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Carbon N. Y., 46, 833840 (2008).
[13] Jorio, A., 5, 111 (2012).
[14] Ko, H., Pikus, Y., Jiang, C., Jauss, A., Hollricher, O., and Tsukruk, V. V., Appl. Phys. Lett., 85, 25982600 (2004).
[15] Shankar, N., Glumac, N.G., Yu, M.F., and Vanka, S.P., Diam. Relat. Mater., 17, 7983 (2008).
[16] Niaura, G., Ragauskas, R., Dikčius, A., Šebeka, B., and Kuodis, Z., Chemija, 20, 7883 (2009).
[17] Bin Zhang, H., Lin, G.D., Zhou, Z.H., Dong, X., and Chen, T., Carbon N. Y., 40, 24292436 (2002).
[18] Varga, M., Izak, T., Vretenar, V., Kozak, H., Holovsky, J., Artemenko, A., Hulman, M., Skakalova, V., Lee, D.S., and Kromka, A., Carbon N. Y., 111, 5461 (2017).
[19] Lawrence, N.S., Pagels, M., Meredith, A., Jones, T.G.J., Hall, C.E., Pickles, C.S.J., Godfried, H.P., Banks, C.E., Compton, R.G., and Jiang, L., Talanta, 69, 829834 (2006).
[20] Gao, Z., Carabelli, V., Carbone, E., Colombo, E., Demaria, F., Dipalo, M., Gosso, S., Manfredotti, C., Pasquarelli, A., Rossi, S., Xu, Y., Vittone, E., and Kohn, E., Diam. Relat. Mater., 19, 10211026 (2010).

Keywords

Synthesis and Characterization of Carbon Fiber Based Porous CNTs-RGO/BDD for Application as Microelectrodes

  • Amanda Araújo Silva (a1), Romário Araújo Pinheiro (a1), Cláudia do Amaral Razzino (a2), André Contin (a1), Vladimir Jesus Trava-Airoldi (a1) and Evaldo José Corat (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed