Skip to main content Accessibility help
×
Home

Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime

  • Andrew Seredinski (a1), Anne Draelos (a1), Ming-Tso Wei (a1), Chung-Ting Ke (a1), Tate Fleming (a2), Yash Mehta (a2), Ethan Mancil (a2), Hengming Li (a2), Takashi Taniguchi (a3), Kenji Watanabe (a3), Seigo Tarucha (a4) (a5), Michihisa Yamamoto (a4) (a5), Ivan V. Borzenets (a6), François Amet (a2) and Gleb Finkelstein (a1)...

Abstract

Coupling superconductors to quantum Hall edge states is the subject of intense investigation as part of the ongoing search for non-abelian excitations. Our group has previously observed supercurrents of hundreds of picoamperes in graphene Josephson junctions in the quantum Hall regime. One of the explanations of this phenomenon involves the coupling of an electron edge state on one side of the junction to a hole edge state on the opposite side. In our previous samples, these states are separated by several microns. Here, a narrow trench perpendicular to the contacts creates counterpropagating quantum Hall edge channels tens of nanometres from each other. Transport measurements demonstrate a change in the low-field Fraunhofer interference pattern for trench devices and show a supercurrent in both trench and reference junctions in the quantum Hall regime. The trench junctions show no enhancement of quantum Hall supercurrent and an unexpected supercurrent periodicity with applied field, suggesting the need for further optimization of device parameters.

Copyright

Corresponding author

*Corresponding author: Andrew Seredinski (ams168@duke.edu)

References

Hide All
[1]Alicea, J., Rep. Prog. Phys. 75 7 (2012).
[2]Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., and Fisher, M.P.A., Phys. Rev. X 4 011036 (2014).
[3]San-Jose, P., Lado, J.L., Aguado, R., Guinea, F., and Fernández-Rossier, J., Phys. Rev. X 5 041041 (2015).
[4]Calado, V.E., Goswami, S., Nanda, G., Diez, M., Akhmerov, A.R., Watanabe, K., Taniguchi, T., Klapwijk, T.M., and Vandersypen, L.M.K., Nat. Nanotechnol. 10 761764 (2015).
[5]Shalom, M.B., Zhu, M. J., Fal’ko, V. I., Mishchenko, A., Kretinin, A. V., Novoselov, K. S., Woods, C. R., Watanabe, K., Taniguchi, T., Geim, A. K., and Prance, J. R., Nat. Phys. 12, 318322 (2015).
[6]Wan, Z., Kazakov, A., Manfra, M.J., Pfeiffer, L.N., West, K.W., and Rokhinson, L.P., Nat. Comm. 6 (2015).
[7]Lee, G.H., Huang, K.F., Efetov, D.K., Wei, D.S., Hart, S., Taniguchi, T., Watanabe, K., Yacoby, A., and Kim, P., Nature Physics 13 693698 (2017).
[8]Park, G.H., Kim, M., Watanabe, K., Taniguchi, T., and Lee, H.J., Sci. Rep. 7 (2017).
[9]Amet, F., Ke, C.T., Borzenets, I.V., Wang, J., Watanabe, K., Taniguchi, T., Deacon, R.S., Yamamoto, M, Bomze, Y., Tarucha, S., and Finkelstein, G., Science 352, 966969 (2016).
[10]Draelos, A.W., Wei, M.T., Seredinski, A., Ke, C.T., Mehta, Y., Chamberlain, R., Watanabe, K., Tarucha, S., Borzenets, I.V., Amet, F., and Finkelstein, G., J. Low Temp. Phys. (2018).
[11]Ma, A., and Zyuzin, A.Y., Europhys. Lett. 21 (1993).
[12]van Ostaay, J.A.M., Akhmerov, A.R., and Beenakker, C.W.J, Phys. Rev. B 83, 195441 (2011).
[13]Lindner, N.H., Berg, E., Rafael, G., and Stern, A., Phys. Rev. X 2 041002 (2012).
[14]Clarke, D.J., Alicea, J., and Shtengel, K., Nat. Commun. 4 1348 (2013).
[15]Huang, X.L., and Nazarov, Y.V., Phys. Rev. Lett. 118 177001 (2017).
[16]Nazarov, Y.V. and Blanter, Y.M.. Quantum Transport: Introduction to Nanoscience (Cambridge University Press, UK 2009) pp. 103105.
[17]Borzenets, I.V., Amet, F., Ke, C.T., Draelos, A.W., Wei, M.T., Seredinski, A., Watanabe, K., Taniguchi, T., Bomze, Y., Yamamoto, M., Tarucha, S., and Finkelstein, G., Phys. Rev. Lett. 117, 237002 (2016).
[18]Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L.M., Muller, D.A., Guo, J., Kim, P., Hone, J., Shepard, K.L., and Dean, C.R., Science 342 6158 (2013).
[19]Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Phys. Rev. Lett. 97 187401 (2006).
[20]Grenadier, S., Li, J., Lin, J., and Jiang, H., J. Vac. Sci. Technol. 31 061517 (2013).
[21]Lemme, M.C., Bell, D.C., Williams, J.R., Stern, L.A., Baugher, B.W.H., Jarillo-Herrero, P., and Marcus, C.M., ACS Nano 3 (9) (2009).
[22]Nanda, G., Hlawacek, G., Srijit, G., Watanabe, K., Taniguchi, T., and Alkemade, P.F.A., Carbon 119 (2017).
[23]Ke, C.T., Borzenets, I.V., Draelos, A.W., Amet, F., Bomze, Y., Jones, G., Craciun, M., Russo, S., Yamamoto, M., Tarucha, S., and Finkelstein, G., Nano Lett. 16 4788–91 (2016).
[24]Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., and Lau, C.N., Science 317, 1530 (2007).
[25]Young, A.F. and Kim, P., Nat. Phys. 5, 222226 (2009).
[26]Tinkham, M. Introduction to Superconductivity Second Edition (Dover, 2004) pp. 215218.
[27]Blonder, G.E., Tinkham, M., and Klapwijk, T.M., Phys. Rev. B 25 (1982).
[28]Williams, J.R., Abanin, D.A., DiCarlo, L., Levitov, L.S., and Marcus, C.M., Phys. Rev. B 80 045408 (2009).

Keywords

Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime

  • Andrew Seredinski (a1), Anne Draelos (a1), Ming-Tso Wei (a1), Chung-Ting Ke (a1), Tate Fleming (a2), Yash Mehta (a2), Ethan Mancil (a2), Hengming Li (a2), Takashi Taniguchi (a3), Kenji Watanabe (a3), Seigo Tarucha (a4) (a5), Michihisa Yamamoto (a4) (a5), Ivan V. Borzenets (a6), François Amet (a2) and Gleb Finkelstein (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed