Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T23:56:04.788Z Has data issue: false hasContentIssue false

Study of the performance of SnxSbySz/carbon nanofibers composite as anode of sodium-ion batteries

Published online by Cambridge University Press:  09 October 2020

L.A. Rodríguez-Guadarrama
Affiliation:
CINVESTAV, Unidad Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe25900, Coahuila, Mexico
J. Escorcia-García
Affiliation:
CONACYT-CINVESTAV, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe25900, Coahuila, México
E. Quiroga-González
Affiliation:
Institute of Physics, Benemérita Universidad Autónoma de Puebla, San Claudio and 184 Sur 72574, Puebla, Mexico
I.L. Alonso-Lemus*
Affiliation:
CONACYT-CINVESTAV, Unidad Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe25900, Coahuila, México
*
*Email: I.L. Alonso-Lemus (ivalemus@gmail.com)
Get access

Abstract

Sodium-ion batteries (SIBs) have emerged as a promising alternative for energy storage. In this work, it has been synthesized a nanocomposite material of SbxSbySz/Carbon nanofibers (CNFs) using low-cost synthesizing methods. First, CNFs have been obtained by electrospinning method with subsequent carbonation at 700°C. Afterward, a SbxSbySz thin coating is deposited on the CNFs by chemical bath deposition technique to obtain the SbxSbySz/CNFs. In order to obtain the SnSb2S4 crystalline phase, the composite is heated at 300°C in nitrogen atmosphere. The evaluation of this nanocomposite as the anode for SIBs has a reversible discharge capacity of 180 mAh g-1 and a columbic efficiency of 61.4% after 9 cycles. On the other hand, the resistance associated to the charge transfer to the CNFs decreases from 115.03 Ω to 77.86 Ω due to the incorporation of SnxSbySz. Finally, an easy and inexpensive route has been proposed for the synthesis of SbxSbySz/CNFs composite with great potential to be used as anode material for SIBs.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nayak, P.K., Yang, L., Brehm, W., and Adelhelm, P., Chem. Int. Ed. 57, 102120 (2018).CrossRefGoogle Scholar
Hwang, J.Y., Myung, S.T., and Sun, Y.K., Chem. Soc. Rev. 46, 35293614 (2017).CrossRefGoogle Scholar
Balogun, M.S., Qiu, Y.L., Liu, P., and Tong, Y., Carbon 98, 162178 (2016).CrossRefGoogle Scholar
You, Y., and Manthiram, A., Adv. Energy. Mater. Int. 8, 112 (2018).Google Scholar
Deng, J., Luo, W.B., Chou, S.L., Liu, H.K., and Dou, S.X., Adv. Energy. Mater. 8, 117 (2018).Google Scholar
Jin, T., Han, Q., Wang, Y., and Jiao, L., Small 14, 126 (2018).Google Scholar
Hou, H., Qui, X., Wei, W., Zhang, Y., and Ji, X., Adv. Energy. Mater. 7, 130 (2017).Google Scholar
Lao, M., Zhang, Y., Luo, W., Yan, Q. Sun, W., And Dou, S.X., Adv. Mater. 29, 123 (2017).CrossRefGoogle Scholar
Zhang, Y., Zhou, Q., Zhu, J., Yan, Q., Dou, S.X, and Sun, W., Funct. Mater. 27, 134 (2017).Google Scholar
Liang, Y., Lai, W.H., Miao, Z., and Chou, S.L., Nano Energy 14, 120 (2018).Google Scholar
Jung, J.M., Lee, C.L., Yu, S., and Kim, I.D., Nano Lett. 4, 703750 (2016).Google Scholar
Chen, C., Li, G., Zhu, J., Lu, Y., Jiang, M., Hu, Y., Shen, Z., and Zhang, X., Carbon 120, 380391 (2017).CrossRefGoogle Scholar
Nair, P.K., García-Angelmo, A.R., and Nair, M.T.S., Phys. Status. Solidi A. 213, 170177 (2016).CrossRefGoogle Scholar
Rodríguez-Guadarrama, L.A., Alonso-Lemus, I.L., Campos-Álvarez, J., And Escorcia-García, J., MRS. Adv. 4, 20352042 (2019).CrossRefGoogle Scholar
Chalapachi, U., Poornaprakash, B., and Park, S.H., J. Sol. Energy. 139, 238248 (2016).CrossRefGoogle Scholar
Dittrich, H., Stadler, A., Topa, D., Schimper, H.J., and Basch, A., Phys. Status Solidi A 206, 10341041 (2009).CrossRefGoogle Scholar
Abdelkader, D., Akkari, F.C., Khemiri, N., Miloua, R., Antoni, F., Gallas, B., and Kanzari, M., Physica B: Condensed Matter. 546, 3343 (2018).CrossRefGoogle Scholar
Chalapachi, U., Poornaprakash, B., Ahn, C.H., and Park, S.H., Mater. Sci. Semicond. Process. 84, 138143 (2018).CrossRefGoogle Scholar
Leang, W., and Pan, B., Forest 10, 112 (2019).Google Scholar
Keskinates, M., Yilmaz, B., Ulusu, Y., and Bayrakci, M., Mater. Chem. Phys. 205, 522529 (2018).CrossRefGoogle Scholar
Gopakumar, D.A., Pai, A.R., Pottathara, Y.B., Pasquini, D., Morais, L.C., Luke, M., Kalarikkal, N., Grohens, y., and Thomas, S., Appl. Mater. Interfaces. 23, 2003220043 (2018).CrossRefGoogle Scholar
Minna Reddy, V.R., Gedi, S., Park, C., and Miles, R.W., Curr. Appl. Phys. 15, 588598 (2015).CrossRefGoogle Scholar
Aksaya, S., Özer, T., and Zor, M., Eur. Phys. J. Appl. Phys. 47, p1-p3 (2009).Google Scholar
Muneeb, M., Ismail, B., Fazal, T., Khan, R.A., Khan, A.M., Bilal, A., Muhammad, B., and Khan, A.R., Arab. J. Chem. 4, 11171125 (2018).CrossRefGoogle Scholar
Xia, J., Jiang, K., Xie, J., Gou, S., Liu, L., Zhang, Y., Nie, S., Yuan, Y., Yan, H., and Wang, X., Chem. Eng. J. 359, 12441251 (2019).CrossRefGoogle Scholar
Zhai, H., Jiang, H., Qian, Y., Cai, X., Liu, H., Qiu, Y., Jin, M., Xiu, F., Liu, X., and Lai, L., Mater. Chem. Phys. 240, 18 (2020).CrossRefGoogle Scholar
Wu, Y., Nie, P., Wu, L., Dou, H., and Zhang, X., Chem. Eng. J. 334, 932938 (2018).CrossRefGoogle Scholar
Diliegros-Godines, C.J., Santos-Cruz, J., Mathews, N.R., And Pal, M., J. Mater. Sci. 53, 1156211573 (2018).CrossRefGoogle Scholar
Zou, C., Zhang, L., Hu, X., Wang, Z., Wik, T., And Peacht, M., J. Power Sources 30, 286296 (2018).CrossRefGoogle Scholar
Kakunuri, M., Kaushik, S., Saini, A., and Sharma, C.S., Bull. Mater. Sci. 3, 435439 (2017).CrossRefGoogle Scholar
Yan, X., Tai, Z., Chen, J., And Xue, Q., Nanoscale 3, 212216 (2011).CrossRefGoogle Scholar