Skip to main content Accessibility help
×
Home

Study of MnO2-Graphene Oxide nanocomposites for supercapacitor applications

  • Rahul Singhal (a1), Justin Fagnoni (a1), David Thorne (a1), Peter K. LeMaire (a1), Xavier Martinez (a2), Chen Zhao (a2), Ram K. Gupta (a2), David Uhl (a3), Ellen Scanley (a3), Christine C. Broadbridge (a3), Mani Manivannan (a4) and Rishikesh Pandey (a5)...

Abstract

Graphene oxide (GO)/MnO2 nanocomposites were synthesized by adding KMnO4 in a solution of water and ethanol (3:1), containing 10 mg of GO. Brown precipitates were obtained after a continuous stirring for 1 hr. The precipitates were then washed with deionized water (DI) water and dried to obtain the MnO2-GO nanocomposites. Pure MnO2 was also synthesized using the same method without GO for the comparison. X-ray diffraction pattern confirm δ-MnO2 type of MnO2 with birnessite type MnO2 structure. The TEM images show the average diameter of MnO2 nanorods as 15 nm. Electrochemical characterizations were carried out in an aqueous solution of 3M KOH. Charge-discharge studies were carried out between 1A/g to 20 A/g current range. The MnO2-GO nanocomposites showed improved electrochemical performances. The capacitance of MnO2 and MnO2-GO electrodes was found to be as 300 F/g, and 350 F/g, respectively at a current of 0.5 A/g.

Copyright

Corresponding author

*Corresponding author: singhal@ccsu.edu; Ph. +1-860-832-2347

References

Hide All
[1]Xia, Q.X., Shinde, N.M., Yun, J.M., Zhang, T., Mane, R.S., Mathur, S., and Kim, K.H., Electrochim. Acta 271, 351 (2018).
[2]Zhao, P., Yao, M., Ren, H., Wang, N., and Komarneni, S., Appl. Surf. Sci. 463, 931 (2019).
[3]Bello, A., Fashedemi, O.O., Lekitima, J.N., Fabiane, M., Arhin, D.D., Ozoemena, K.I., Gogotsi, Y., Johnson, A.T.C., and Manyala, N., AIP Adv. 3, 082118 (2013).
[4]Veneria, O., Capassoa, C., and Patalano, S., Appl. Energ. 227, 312 (2018).
[5]Bosca, A.G. and Belanger, D., J. Power Sources 326, 595 (2016).
[6]Bahloul, A., Nessark, B., Briot, E., Groult, H., Mauger, A., Zaghib, K., and Julien, C.M., J. Power Sources 240, 267 (2013).
[7]Haldorai, Y., Giribabu, K., Hwang, S.K., Kwak, C.H., Huh, Y.S., and Han, Y.K., Electrochim. Acta 222, 717 (2016).
[8]Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, L., and Zhang, J., Appl. Energ. 134, 439 (2014).
[9]Le, Q. J., Wang, T., Tran, D.N.H., Dong, F., Zhang, Y.X. and Losic, D., J. Mater Chem A 5, 10856 (2017).
[10]Wang, T., Le, Q., Zhang, J., Zhang, Y., Li, W., Electrochim. Acta 253, 311 (2017).
[11]Pandey, R., Zhou, R., Bordett, R., Hunter, C., Glunde, K., Barman, I., Valdez, T., Finck, C., J. Biophotonics. 2018;e201800291. https://doi.org/10.1002/jbio.201800291
[12]Wojydr, M., J. Appl. Crystallogr. 43, 1126 (2010).
[13]Chen, Z., Li, J., Chen, Y., Zhang, Y., Xu, G., Yang, J., and Feng, Y., Particuology 15, 27 (2014).
[14]Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, L., Zhang, J., Appl. Energ. 134, 439 (2014).
[15]Zhao, S., Liu, T., Javed, M.S., Zeng, W., Hussain, S., Zhang, Y., and Peng, X., Electrochim. Acta 191, 716 (2016).
[16]Ezeigwe, E.R., Tan, M.T.T., Khiew, P.S., and Siong, C.W., Ceram. Int. 41, 11418 (2015).
[17]Wen, Z.Q., Li, M., Li, F., Zhu, S.J., Liu, X.Y., Zhang, Y.X., Kumeria, T., Losic, D., Gao, Y., Zhange, W. and Hee, S.X., Dalton T, 45, 936 (2016).
[18]Li, F., Zhang, Y.X., Huang, M., Xing, Y., Zhang, L.L.., Electrochim. Acta 154, 329 (2015).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed