Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T12:01:43.626Z Has data issue: false hasContentIssue false

Studies on Local Structural Inhomogeneity and Origin of Ferroelectricity in Yttrium chromite Ceramics

Published online by Cambridge University Press:  28 March 2016

Venkateswara rao Mannepalli
Affiliation:
Department of Materials science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India - 502285
Ranjith Ramadurai*
Affiliation:
Department of Materials science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India - 502285
*
*Corresponding author: ranjith@iith.ac.in
Get access

Abstract

YCrO3 (YCO) is known to be a multiferroic with orthorhombic, Pnma, structure with center of inversion. However, the local structural inhomogeneity in this compound is believed to give rise to ferroelectric behavior. In this study we explore high temperature Raman investigations of YCO and observed that one of its Raman mode B3g (3) (CrO6 Octahedral tilt mode) softens around the structural phase transition which could be the origin of ferroelectric nature in YCO. In addition, we substitute bismuth (Bi) in YCO to understand the structural distortions that lead to local structural inhomogeneity. Besides B3g (3) mode softening with composition and high temperature studies in Y1-xBixCrO3 the study reveals the structural distortions and the structural tunability Bi offers in such systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheong, S.-W. & Mostovoy, , Nat. Mater. 6, 13 (2007).Google Scholar
Spaldin, N. A., Cheong, S.-W. & Ramesh, R. Phys. Today 63, 38 (2010).Google Scholar
Catalan, G. & Scott, J. F.. Adv. Mater. 21, 2463 (2009).Google Scholar
Kimura, T. Annu. Rev. Mater. Res. 37, 387 (2007).Google Scholar
Fiebig, M., Lottermoser, T., Lonkai, T., Goltsev, A. V. & Pisarev, R. V.. J. Magn. Magn. Mater. 290 -291, 883 (2005).CrossRefGoogle Scholar
Weber, M. C. Kreisel, J,Thomas, P.A,Newton, M,Sardar, K and Walton, R.I, Phys. Rev. B 85, 054303 (2012).Google Scholar
Zhou, J. S Alonso.J.A.Pomjakushin,Goodenough, J.B,Ren, Y,Yan, J.Q &Cheng, J.-G. Phys. Rev. B - Condens. Matter Mater. Phys. 81, 214115 (2010).CrossRefGoogle Scholar
Bhadram, V. S., Swain, D., Dhanya, R.,Polentarutti, M, Sundaresan, A & Narayana, C.. Mater. Res. Express 1, 026111 (2014).Google Scholar
Serrao, C.R, Kundu, A.K, Krupanidhi, S.B, Waghmare, U.V & Rao, C.N.R. Phys. Rev. B 72, 220101(R) (2005).Google Scholar
Ramesha, K., Llobet, a, Proffen, T., Serrao, C. R. & Rao, C. N. R.. J. Phys. Condens. Matter 19, 102202 (2007).Google Scholar
Neaton, J. B., Ederer, C., Waghmare, U. V, Spaldin, N. A. & Rabe, K. M. Phys.Rev.B.71, 014113, (2005)Google Scholar
Saha, S., Chanda, S., Dutta, A. & Sinha, T. P.. J. Sol-Gel Sci. Technol. 69, 553 (2014).Google Scholar
Rodríguez-carvajal, J. & CEA-CNRS, L. L. B. AN INTRODUCTION TO THE PROGRAM Fullprof 2000( Version July2001 ).Google Scholar
Mannepalli, Venkateswara rao, Ranjith, R., David, A., &Prellier, W. (Solid state communications under review)Google Scholar
Udagawa, M., Kohn, K., Koshizuka, N., Tsushima, T. & Tsushima, ., Solid State Commun. 16, 779 (1975).Google Scholar
Todorov, N. D. Abrashev, M.V. Ivanov, V.G,Tsutsumanova, G.G,Marinova, ,Wang, Y.-Q& Iliev, M.N. Phys. Rev. B 83, 224303 (2011).Google Scholar
Yogesh, Sharma,Satyaprakash, Sahoo,William, Perez,Somdutta, Mukherjee,Rajeev, Gupta,Ashis, Garg,Ratnamala, Chatterjee & Ram, s.Katiyar. J. Appl. Phys. 115, 183907 (2014).Google Scholar