Skip to main content Accessibility help
×
Home

Structural Correlation of Ferroelectric Behavior in Mixed Hafnia-Zirconia High-k Dielectrics for FeRAM and NCFET Applications

  • Vineetha Mukundan (a1), Karsten Beckmann (a1), Kandabara Tapily (a2), Steven Consiglio (a2), Robert Clark (a2), Gert Leusink (a2), Nathaniel Cady (a1) and Alain C Diebold (a1)...

Abstract

The recent discovery of ferroelectric behavior in doped hafnia-based dielectrics, attributed to a non-centrosymmetric orthorhombic phase, has potential for use in attractive applications such as negative differential capacitance field-effect-transistors (NCFET) and ferroelectric random access memory devices (FeRAM). Alloying with similar oxides like ZrO2, doping with specific elements such as Si, novel processing methods, encapsulation and annealing schemes are also some of the techniques that are being explored to target structural modifications and stabilization of the non-centrosymmetric phase. In this study, we utilized synchrotron-based x-ray diffraction in the grazing incidence in plane geometry (GIIXRD) to determine the crystalline phases in hafnia-zirconia (HZO) compositional alloys deposited by atomic layer deposition (ALD). Here we compare and contrast the structural phases and ferroelectric properties of mechanically confined HZO films in metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) structures. Both MIM and MIS structures reveals a host of reflections due to non-monoclinic phases in the d-spacing region between 1.75Å to 4Å. The non-monoclinic phases are believed to consist of tetragonal and orthorhombic phases. Compared to the MIS structures a suppression of the monoclinic phase in MIM structures with 50% zirconia or less was observed. The correlation of the electrical properties with the structural analysis obtained by GIIXRD highlights the importance of understanding the effects of the underlying substrate (metal vs. Si) for different target applications.

Copyright

Corresponding author

References

Hide All
[1]Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U., and Böttger, U., Appl. Phys. Lett. 99, 10 (2011).
[2]Mikolajick, T., Slesazeck, S., Park, M., and Schroeder, U., MRS Bulletin., 43, 340346 (2018).
[3]Park, M. H., Lee, Y. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C. S., , Adv. Mater., 27, 18111831 (2015).
[4]Jerry, M., Chen, P. Y., Zhang, J., Sharma, P., Ni, K., Yu, S., and Datta, S. in Electron Devices Meeting (IEDM), (IEEE International Electron Device Meeting (IEDM) San Francisco, CA, 2017) pp. 6.2.16.2.4.
[5]Aziz, A., Breyer, E. T., Chen, A., Chen, X., Datta, S., Gupta, S. K., Hoffmann, M., Hu, X. S., Ionescu, A., Jerry, M., and Mikolajick, T. in Design, Automation & Test in Europe Conference & Exhibition (DATE, IEEE, 2018) pp. 12891298.
[6]Mittmann, T., Fengler, F. P. G., Richter, C., Park, M. H., Mikolajick, T., and Schroeder, U., Microelectronic Engineering, 178, 4851 (2017).
[7]Chernikova, A., Kozodaev, M., Markeev, A., Negrov, D., Spiridonov, M., Zarubin, S., Bak, O., Buragohain, P., Lu, H., Suvorova, E., and Gruverman, A., ACS Appl. Matl. & Interf., 8, 72327237 (2016).
[8]Wang, J., Li, H. P., and Stevens, R., J. Matl. Sci. 27, 53975430 (1992).
[9]Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K., and Kikegawa, T., J. Am. Ceram. Soc. 84, 13691373 (2001).
[10]Sang, X., Grimley, E. D., Schenk, T., Schroeder, U., and LeBeau, J. M., Appl. Phys. Lett. 106, 162905 (2015).
[11]Xu, L., Nishimura, T., Shibayama, S., Yajima, T., Migita, S, and Toriumi, A., J. Appl. Phys., 122, 124104 (2017).
[12]Park, M. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., Lee, Y. H., Hyun, S. D., and Hwang, C. S., J. Mater. Chem. C 3, 62916300 (2015).
[13]Kim, H. J., Park, M. H., Kim, Y. J., Lee, Y. H., Moon, T., Kim, K. D., Hyun, S. D., and Hwang, C. S., Nanoscale 8, 13831389 (2016).
[14]Park, M. H., Kim, H. J., Kim, Y. J., Lee, W., Moon, T., Kim, K. D., and Hwang, C. S., Appl. Phys. Lett. 105, 072902 (2014).
[15]Dey, S., Tapily, K., Consiglio, S., Clark, R. D., Wajda, C. S., Leusink, G. J., Woll, A. R., Sharma, P., Dutta, S., and Diebold, A. C. in International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, edited by Secula, E. M. and Seiler, D. G., (Frontiers of Characterization and Metrology for Nanoelectronics (FCMN) 2017) pp. 223225.
[16]Kisi, E. H., Howard, C. J., and Hil, R. J., J. Am. Ceram. Soc. 72, 1757 (1989) - SG 29- Pbc21- ICSD CollCode 67004.
[17]Hann, R. E., Suitch, P. R., , J. and Pentecost, L., J. Am. Ceram. Soc. 68, 285 (1985) - SG 14 - P21/c - ICSD CollCode 173964.
[18]Ohtaka, O., Yamanaka, T., and Kume, S., Nippon Seramikkusu Kyokai Gakujustsu Ronbunchi., 99, 826 (1991) - SG 61 - Pbca - ICSD CollCode 173965.
[19]Kang, J., Lee, E. C., and Chang, K. J., Phys. Rev. B., 68, 054106 (2003) - SG 62 - Pnma - ICSD Coll Code 173963.
[20]Curtis, et al. J. Am. Ceram. Soc. 37, 458 (1954) - SG 137- P42/nmc -ICSD CollCode 85322.
[21]Demkov, A. A., Phys. Stat. Sol. (b), 226, 57 (2001) - SG 137- P42/nmc -ICSD CollCode 85322.
[22]Wong-Ng, W., McMurdie, H. F., Paretzkin, B., Zhang, Y, Davis, K. L., Hubbard, C., Dragoo, A. L., and Stewart, J. M., Powder Diffraction 2, 191 (1987) - Fm3m- SG 225- ICSD CollCode 604220.
[23]Dey, S., Tapily, K., Consiglio, S., Clark, R. D., Wajda, C. S., Leusink, G. J., Woll, A. R., and Diebold, A. C., J. Appl. Phys. 120, 125304 (2016).
[24]Huan, T. D., Sharma, V., Rossetti, G. A., and Ramprasad, R., Phys. Rev. B, 90, 064111 (2014).
[25]Müller, J., Böscke, T. S., Bräuhaus, D., Schröder, U., Kücher, J., Mikolajick, T., and Frey, L., Appl. Phys. Lett., 99, 112901 (2011).
[26]Müller, J., Böscke, T. S., Schröder, U., Mueller, S., Bräuhaus, D., Bottger, U., Frey, L., and Mikolajick, T., Nano Lett. 12, 43184323 (2012).
[27]Reyes-Lillo, S. E., Garrity, K. F., and Rabe, K. M., Phys. Rev. B, 90, 140103 (2014).

Keywords

Related content

Powered by UNSILO

Structural Correlation of Ferroelectric Behavior in Mixed Hafnia-Zirconia High-k Dielectrics for FeRAM and NCFET Applications

  • Vineetha Mukundan (a1), Karsten Beckmann (a1), Kandabara Tapily (a2), Steven Consiglio (a2), Robert Clark (a2), Gert Leusink (a2), Nathaniel Cady (a1) and Alain C Diebold (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.