Skip to main content Accessibility help

Spiral diffusion of self-assembled dimers of Janus spheres

  • John G. Gibbs (a1), Amir Nourhani (a1) (a2), Joel N. Johnson (a1) and Paul E. Lammert (a2)


Janus spheres, micron-sized silica spheres half-coated with platinum, move rectilinearly away from the platinum side in aqueous hydrogen peroxide. Upon self-assembling, these colloidal particles can form dimers with different conformations that exhibit both rectilinear and rotational modes of motion depending upon the relative orientation of each Janus sphere. At the micron length-scale, stochastic rotational Brownian dynamics is of the order of deterministic dynamics, and their coupling results in effective diffusion, in addition to passive translational diffusion. For dimers with rotary motion, the dynamic coupling leads to spiral trajectories for an ensemble average of the displacement vector.


Corresponding author


Hide All
1. Marchetti, M. C., Joanny, J., Ramaswamy, S., Liverpool, T., Prost, J., Rao, M., and Simha, R. A., Rev. Mod. Phys. 85, 1143 (2013).
2. Di Leonardo, R., Angelani, L., DellArciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M., Mecarini, F., De Angelis, F., and Di Fabrizio, E., Proc. Natl. Acad. Sci. 107, 9541 (2010).
3. Schwarz-Linek, J., Valeriani, C., Cacciuto, A., Cates, M., Proc. Acad. Sci. 109, 4052 (2012).
4. Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., Pilizota, T., Martinez, V. A., and Poon, W. C., Colloids Surf., B 137, 2 (2016).
5. Zöttl, A. and Stark, H., Phys. Rev. Lett. 112, 118101 (2014).
6. Vach, P. J., Walker, D., Fischer, P., Fratzl, P., and Faivre, D., J. Phys., D 50, 11LT03 (2017).
7. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., and Chaikin, P. M., Science 339, 936 (2013) .
8. Yan, J., Bloom, M., Bae, S. C., Luijten, E., and Granick, S., Nature 491, 578 (2012).
9. Schamel, D., Mark, A. G., Gibbs, J. G., Miksch, C., Morozov, K. I., Leshansky, A. M., and Fischer, P., ACS Nano 8, 8794 (2014).
10. Ghosh, A., Paria, D., Rangarajan, G., and Ghosh, A., J. Phys. Chem. Lett. 5, 62 (2013).
11. Gangwal, S., Cayre, O. J., Bazant, M. Z., and Velev, O. D., Phys. Rev. Lett. 100, 058302 (2008).
12. Jiang, H.-R., Yoshinaga, N., and Sano, M., Phys. Rev. Lett. 105, 268302 (2010).
13. Sharifi-Mood, N., Koplik, J., and Maldarelli, C., Phys. Fluids 25, 012001 (2013).
14. Nourhani, A. and Lammert, P. E., Phys. Rev. Lett. 116, 178302 (2016).
15. Wang, Y., Hernandez, R. M., Bartlett, D. J., Bingham, J. M., Kline, T. R., Sen, A., Mallouk, T. E., et al. ., Langmuir 22, 10451 (2006).
16. de Graaf, J., Rempfer, G., and Holm, C., IEEE Trans. Nanobiosci. 14, 272 (2015).
17. Nourhani, A., Ebbens, S. J., Gibbs, J. G., and Lammert, P. E., Phys. Rev. E 94, 030601 (2016).
18. Kummel, F., ten Hagen, B., Wittkowski, R., Buttinoni, I., Eichhorn, R., Volpe, G., Lowen, H., and Bechinger, C., Phys. Rev. Lett. 110, 198302 (2013).
19. Popescu, M. N., Uspal, W. E., and Dietrich, S., Eur. Phys. J. Spec. Top. 225, 2189 (2016).
20. Huang, M.-J., Schofield, J., and Kapral, R., Soft Matter 12, 5581 (2016).
21. Buttinoni, I., Bialké, J., Kümmel, F., Löwen, H., Bechinger, C., and Speck, T., Phys. Rev. Lett. 110, 238301 (2013).
22. Nourhani, A., Lammert, P. E., Borhan, A., and Crespi, V. H., Phys. Rev. E 89, 062304 (2014).
23. Ebbens, S., Jones, R. A., Ryan, A. J., Golestanian, R., and Howse, J. R., Phys. Rev. E 82, 015304 (2010).
24. Nourhani, A., Byun, Y.-M., Lammert, P. E., Borhan, A., and Crespi, V. H., Phys. Rev. E 88, 062317 (2013).
25. Johnson, J. N., Nourhani, A., Peralta, R., McDonald, C., Thiesing, B., Mann, C. J., Lammert, P. E., and Gibbs, J. G., Phys. Rev. E 95, 042609 (2017).
26. Wittmeier, A., Holterhoff, A. L., Johnson, J., and Gibbs, J. G., Langmuir, 31, 10402 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed