Skip to main content Accessibility help
×
Home

Smooth TiO2 Thin Films Grown by Aqueous Spray Deposition for Long-Wave Infrared Applications

  • Sarmad Fawzi Hamza Alhasan (a1) (a2), Seth R. Calhoun (a3), Hussain Abouelkhair (a3), Vanessa C. Lowry (a3), Robert E. Peale (a3), Imen Rezadad (a4), Evan M. Smith (a5) (a6), Justin W. Cleary (a6) and Isaiah O. Oladeji (a7)...

Abstract

Self-assembled TiO2 films deposited by aqueous-spray deposition were investigated to evaluate morphology, crystalline phase, and infrared optical constants. The Anatase nano-crystalline film had ∼10 nm characteristic surface roughness sparsely punctuated by defects of not more than 200 nm amplitude. The film is highly transparent throughout the visible to wavelengths of 12 μm. The indirect band gap was determined to be 3.2 eV. Important for long-wave infrared applications is that dispersion in this region is weak compared with the more commonly used dielectric SiO2 for planar structures. An example application to a metal-insulator-metal resonant absorber is presented. The low-cost, large-area, atmospheric-pressure, chemical spray deposition method allows conformal fabrication on flexible substrates for long-wave infrared photonics.

Copyright

Corresponding author

References

Hide All
1. Alhasan, S., Khalilzadeh-Rezaie, F., Peale, R.E., and Oladeji, I., MRS Advances, 1, 3169 (2016).
2. Siefke, T., Kroker, S., Pfeiffer, K., Puffky, O., Dietrich, K., Franta, D., Ohlídal, I., Szeghalmi, A., Kley, E.-B., and Tünnermann, A., Adv. Opt. Mater. 4, 1780 (2016).
3. Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., Fedosenko, O., Machulik, S., Aleksandrova, A., Monastyrskyi, G., Flores, Y., and Masselink, W. T., Appl. Opt. 51, 6789 (2012).
4. Peale, R.E., Smith, E., Abouelkhair, H., Oladeji, I.O., Vangala, S., Cooper, T., Grzybowski, G., Khalilzadeh-Rezaie, F., and Cleary, J.W., Opt. Eng. 56, 037109 (2017).
5. Nath, J., Modak, S., Rezadad, I., Panjwani, D., Rezaie, F., Cleary, J. W., and Peale, R.E., Optics Express 23, 20366 (2015).
6. Rezaie, F.K., Fredericksen, C.J., Buchwald, W.R., Cleary, J.W., Smith, E.M., Rezadad, I., Nath, J., Figueiredo, P., Shahzad, M., Boroumand, J., Yesiltas, M., Medhi, G., Davis, A., and Peale, R.E., MRS Online Proceedings Library Archive 1510 (2013).
7. Tang, H., Berger, H., Schmid, P.E., and Levy, F., Solid State Commun. 92, 267 (1994).
8. J.I.P., Optical Processes in Semiconductors (Dover, New York, 1971), p. 3442.
9. Moss, T.S., Optical Properties of Semiconductors (Butterworth Scientific, London, 1959), p. 3438.
10. Tang, H., Prasad, K., Sanjines, R., Schmid, P.E., and Levy, F., J. Appl. Phys. 75, 2042 (1994).
11. Takikawa, H., Matsui, T., Sakakibara, T., Bendavid, A., and Martin, P.J., Thin Solid Films 348, 145 (1999).
12. Boschloo, G.K., Goossens, A., and Schoonman, J., J. Electrochem. Soc. 144, 1311 (1997).
13. Aoki, A. and Nogami, G., J. Electrochem. Soc. 143, L191 (1996).
14. Wang, Z., Helmersson, U., and P-O., Käll, Thin Solid Films 405, 50 (2002).
15. Calhoun, S.R., Lowry, V.C., Stack, R.T., Evans, R.N., Brescia, J.R., Fredricksen, C.J., Nath, J., Peale, R.E., Smith, E.M., Cleary, J.W., MRS Advances, submitted (2017).
16. Gonzalez, R.J., Zallen, R., and Berger, H., Phys. Rev. B 55, 7014 (1997).
17. Hovel, H. J., Electrochem, J.. Soc. 125, 983 (1978).
18. Somberg, H., Proc. 20th IEEE Photovoltaics Specialists Conference, p. 1557 (1988).
19. Huang, Aibin, Zhu, Jingting, Zhou, Yijie, Yu, Yu, Liu, Yan, Yang, Songwang, Ji, Shidong, Lei, Lei and Jin, Ping, Nanotechnology 28, 1 (2017).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed