Skip to main content Accessibility help

Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics

  • Richard Brearton (a1) (a2), Maciej W. Olszewski (a3), Shilei Zhang (a1), Morten R. Eskildsen (a3), Charles Reichhardt (a4), Cynthia J. O. Reichhardt (a4), Gerrit van der Laan (a2) and Thorsten Hesjedal (a1)...


Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5-7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.


Corresponding author


Hide All
[1]Nagaosa, N. and Tokura, Y., Nat. Nanotechnol. 8, 899-911 (2013).
[2]Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., and Böni, P., Science 323, 915-919 (2009).
[3]Yu, X. Z., Onose, Y., Kanazawa, N., Park, J. H., Han, J. H., Matsui, Y., Nagaosa, N., and Tokura, Y., Nature 465, 901-904 (2010).
[4]Yu, X. Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W. Z., Ishiwata, S., Matsui, Y., and Tokura, Y., Nat. Mater. 10, 106-109 (2011).
[5]Seki, S., Yu, X. Z., Ishiwata, S., and Tokura, Y., Science 336, 198-201 (2012).
[6]Tokunaga, Y., Yu, X. Z., White, J. S., Rønnow, H. M., Morikawa, D., Taguchi, Y., and Tokura, Y., Nat. Commun. 6, 7638 (2015).
[7]Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R. A., Everschor, K., Garst, M., and Rosch, A., Science 330, 1648-1651 (2010).
[8]Everschor, K., Garst, M., Binz, B., Jonietz, F., Mühlbauer, S., Pfleiderer, C., and Rosch, A., Phys. Rev. B 86, 054432 (2012).
[9]Yu, X. Z., Kanazawa, N., Zhang, W. Z., Nagai, T., Hara, T., Kimoto, K., Matsui, Y., Onose, Y., and Tokura, Y., Nat. Commun. 3, 988 (2012).
[10]Iwasaki, J., Mochizuki, M., and Nagaosa, N., Nat. Commun. 4, 1463 (2013).
[11]Woo, S., Litzius, K., Krüger, B., Im, M.-Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R. M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.-A., Fischer, P., Kläui, M., and Beach, G. S. D., Nat. Mater. 15, 501-506 (2016).
[12]Sampaio, J., Cros, V., Rohart, S., Thiaville, A., and Fert, A., Nat. Nanotechnol. 8, 839-844 (2013).
[13]Zhang, S. L. Wang, W. W., Burn, D. M., Peng, H., Berger, H., Bauer, A., Pfleiderer, C., van der Laan, G., and Hesjedal, T., Nat. Commun. 9, 2115 (2018).
[14]Thiele, A. A., Phys. Rev. Lett. 30, 230-233 (1973).
[15]Reichhardt, C., Ray, D., and Reichhardt, C. O., Phys. Rev. Lett. 114, 217202 (2015).
[16]Olszewski, M. W., Eskildsen, M. R., Reichhardt, C., and Reichhardt, C. O., New J. Phys. 20, 023005 (2018).
[17]Lin, S. Z., Reichhardt, C., Batista, C. D., and Saxena, A., Phys. Rev. B 87, 214419 (2013).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed