Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T10:22:11.966Z Has data issue: false hasContentIssue false

Silicon Nanowire Arrays Coated with Ag and Au Dendrites for Surface-Enhanced Raman Scattering

Published online by Cambridge University Press:  20 August 2020

Nikita Grevtsov
Affiliation:
Micro- and Nanoelectronics Department, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
Aliaksandr Burko
Affiliation:
Micro- and Nanoelectronics Department, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
Sergey Redko
Affiliation:
Micro- and Nanoelectronics Department, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
Nadzeya Khinevich
Affiliation:
Micro- and Nanoelectronics Department, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
Siarhei Zavatski
Affiliation:
Micro- and Nanoelectronics Department, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
Stanislau Niauzorau
Affiliation:
The Polytechnic School, Arizona State University, Mesa, AZ, United States
Hanna Bandarenka
Affiliation:
Micro- and Nanoelectronics Department, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus The Polytechnic School, Arizona State University, Mesa, AZ, United States
Get access

Abstract

Silicon nanowires (SiNWs) were comprehensively characterized in dependence on conditions of their formation via metal (Ag) -assisted chemical etching (MACE) of monocrystalline Si. The Ag structures remained on/between SiNWs based on both n- and p-Si were found to promote surface enhancement of Raman scattering (SERS) from organic molecules adsorbed on their surface. The Ag structures on/between the SiNWs/p-Si facilitated two times higher SERS-signal from 10-6 M rhodamine 6G than those in the SiNWs/n-Si. The activity of the SERS-substrates based on p-Si was improved by modification with small Au dendrites, which provided rich family of hot spots and prevented degradation of the SERS-activity observed for pure Ag dendrites due to formation of Ag2S during one week of storage in air. The SERS-substrates based on the Au/Ag dendrites on SiNWs/p-Si allowed to achieve nanomolar detection limit of rhodamine 6G and 5,5′-dithiobis (2-nitrobenzoic acid).

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, F., Gao, X., Ma, L., Yuan, C.. Journal of Micro- and Nano-Manufacturing, 7, 011001 (2019).CrossRefGoogle Scholar
McSweeney, W., Geaney, H., O'Dwyer, C.. Nano Research, 8, 1395 (2015).CrossRefGoogle Scholar
Salihoglu, O.. Materials Research, 22, 2 (2019)CrossRefGoogle Scholar
Zamfir, M. R., Nguyen, H. T., Moyen, E., Lee, Y. H., Pribat, D.. Journal of Materials Chemistry A, 1, 9566 (2013)CrossRefGoogle Scholar
Toor, F., Duan, W., Gao, B., Black, M.. Nanomaterials for Solar Cell Applications (London, Elsevier, 2019) p. 699.CrossRefGoogle Scholar
Sharstniou, A., Niauzorau, S., Chubenko, E., Azeredo, B., Bondarenko, V.. MRS Advances, 2, 3667 (2017).CrossRefGoogle Scholar
Li, X., Tao, K., Zhang, D., Gao, Z., Jia, R., Wang, B., Jiang, S., Ji, Z., Liu, X.. Electrochemistry Communications, 113 (2020).CrossRefGoogle Scholar
Lin, Y., Chen, Y., Hsueh, C.. Results in Physics, 12, 244 (2019).CrossRefGoogle Scholar
Lauridsen, R., Rindzevicius, T., Molin, S., Johansen, H., Berg, R., Alstrom, T., Almdal, K., Larsen, F., Schmidt, M., Boisen, A.. Sensing and Bio-Sensing Research, 5, 84 (2015).CrossRefGoogle Scholar
Niauzorau, S., Girel, K., Sherstnyov, A., Chubenko, E., Bandarenka, H., Bondarenko, V.. Phys. Status Solidi, 13, 146 (2016).Google Scholar
Rajkumar, K., Pandian, R., Sankarakumar, A., Kumar, R.. ACS Omega, 2, 4540 (2017).CrossRefGoogle Scholar
Huang, Z., Geyer, N., Werner, P., de Boor, J., Gösele, U.. Adv. Mater., 23, 285 (2010).CrossRefGoogle Scholar
Milazzo, R., D'Arrigo, G., Spinella, C., Grimaldi, M., Rimini, E.. Journal of the Electrochemical Society, 159, 521 (2012).CrossRefGoogle Scholar
Volovlikova, O., Gavrilov, S., Dronov, A., Grishina, Y., Belov, A.. Sol. St. Phen., 213, 103 (2014).Google Scholar
Liu, Y., Ji, G., Wang, J., Liang, X., Zuo, Z., Shi, Y.. Nanoscale Res. Lett, 7, 4540 (2012).Google Scholar
Cong, L., Lam, N., Giang, N., Kien, P., Dung, N., Ha, N.. Mat. Sci. Semicon. Proc., 90, 198 (2019).CrossRefGoogle Scholar
Zhang, M., Peng, K., Fan, X., Jie, J., Zhang, R., Lee, S., Wong, N.. Phys, J.. Chem. C, 112, 4444 (2008).Google Scholar
Li, L., Zhang, C., Tuan, C., Chen, Y., Wong, C.. Micromech, J.. Microeng., 28, 055006 (2018).CrossRefGoogle Scholar
Hu, Y., Peng, K., Liu, L., Qiao, Z., Huang, X., Wu, X., Meng, X., Lee, S.. Scientific Reports, 4, 3667 (2015).CrossRefGoogle Scholar
Omer, A., Yang, Y., Sheng, G., Li, S., Yu, J., Ma, W., Qiu, J., Kolaly, W.. Silicon, 12, 231 (2019).CrossRefGoogle Scholar
Schmidt, M. S., Hübner, J., Boisen, A.. Adv. Mater, 24 (10), OP11-OP18 (2012).Google Scholar
Zavatski, S., Khinevich, N., Girel, K., Redko, S., Kovalchuk, N., Komissarov, I., Lukashevich, V., Semak, I., Mamatkulov, K., Vorobyeva, M., Arzumanyan, G., Bandarenka, H.. Biosensors, 9, 34 (2019).CrossRefGoogle Scholar
Pierce, D.T., Spicer, W.E.. Physical Review B, 5, 3017 (1972).CrossRefGoogle Scholar
Rakić, A.D., Djurišić, A.B., Elazar, J.M., Majewski, M.L.. Applied Optics, 37, 5271 (1998).CrossRefGoogle Scholar
Wee, Q., Ho, J., Chua, S.. ECS J. Solid State Sc., 3, 192 (2014).CrossRefGoogle Scholar
Vinzons, U., Shu, L., Yip, S., Wong, C., Chan, L., Ho, J.. Nanoscale Res. Lett, 12, 385 (2017).CrossRefGoogle Scholar
Radziuk, D., Moehwald, H.. Chem. Soc. Rev, 46, 4042 (2017).Google Scholar
Han, X., Ji, W., Zhao, B., Ozaki, Y. Nanoscale, 9, 4847 (2017).CrossRefGoogle Scholar
Supplementary material: File

Grevtsov et al. supplementary material

Grevtsov et al. supplementary material

Download Grevtsov et al. supplementary material(File)
File 310.9 KB