Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T02:03:42.587Z Has data issue: false hasContentIssue false

Silicon based On-chip Sub-Wavelength Grating Ring and Racetrack Resonator BioSensors

Published online by Cambridge University Press:  05 January 2017

Hai Yan
Affiliation:
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758, USA
Lijun Huang
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Xiaochuan Xu*
Affiliation:
Omega Optics Inc., 8500 Shoal Creek Blvd., Bldg. 4, Suite 200, Austin, TX, 78757, USA
Naimei Tang
Affiliation:
Omega Optics Inc., 8500 Shoal Creek Blvd., Bldg. 4, Suite 200, Austin, TX, 78757, USA
Swapnajit Chakravarty
Affiliation:
Omega Optics Inc., 8500 Shoal Creek Blvd., Bldg. 4, Suite 200, Austin, TX, 78757, USA
Huiping Tian
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Ray T. Chen*
Affiliation:
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758, USA Omega Optics Inc., 8500 Shoal Creek Blvd., Bldg. 4, Suite 200, Austin, TX, 78757, USA
Get access

Abstract

In this paper, we experimentally study the unique surface sensing property and enhanced sensitivity in subwavelength grating (SWG) based microring resonator biosensors versus conventional ring resonator biosensors. In contrast to a conventional ring, the effective sensing region in the SWG microring resonator includes not only the top and side of the waveguide, but also the space between the silicon pillars on the propagation path of the optical mode. It leads to an unique property of thickness-independent surface sensitivity versus common evanescent wave sensors; in other words, the surface sensitivity remains constantly high with progressive attachment of biomolecules to the sensor surface. To increase the robustness of performance of ring shaped circular SWG biosensors, we experimentally demonstrate silicon SWG racetrack resonators. A quality factor of 9800 and bulk sensitivity (S) is ∼429.7 nm/RIU (refractive index per unit) results in an intrinsic detection limit (iDL) 3.71×10-4 RIU in racetrack SWG biosensors while still retaining the accumulated surface thickness properties of circular rings.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this paper.

References

REFERENCES

Estevez, M. C. C., Alvarez, M., and Lechuga, L. M. M., "Integrated optical devices for lab-on-a-chip biosensing applications," Laser Photon. Rev. 6, 463 (2012).Google Scholar
Passaro, V., Tullio, C., Troia, B., Notte, M., Giannoccaro, G., and Leonardis, F., "Recent Advances in Integrated Photonic Sensors," Sensors 12, 15558 (2012).Google Scholar
Vollmer, F., Yang, L., and Fainman, S., "Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices," Nanophotonics 1, 267 (2012).Google Scholar
Zhang, B., Morales, A. W., Peterson, R., Tang, L., and Ye, J. Y., "Label-free detection of cardiac troponin I with a photonic crystal biosensor," Biosens. Bioelectron. 58, 107 (2014).CrossRefGoogle Scholar
Yanik, A. A., Huang, M., Artar, A., Chang, T.-Y., and Altug, H., "Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes," Appl. Phys. Lett. 96, 21101 (2010).Google Scholar
Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., Baehr-Jones, T., Bailey, R. C., and Gunn, L. C., "Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation," IEEE J. Sel. Top. Quantum Electron. 16, 654 (2010).Google Scholar
Chao, C.-Y. and Guo, L. J., "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527 (2003).Google Scholar
McClellan, M. S., Domier, L. L., and Bailey, R. C., "Label-free virus detection using silicon photonic microring resonators," Biosens. Bioelectron. 31, 388 (2012).CrossRefGoogle Scholar
Janz, S., Xu, D.-X., Vachon, M., Sabourin, N., Cheben, P., McIntosh, H., Ding, H., Wang, S., Schmid, J. H., Delâge, A., Lapointe, J., Densmore, A., Ma, R., Sinclair, W., Logan, S. M., Mackenzie, R., Liu, Q. Y., Zhang, D., Lopinski, G., Mozenson, O., Gilmour, M., and Tabor, H., "Photonic wire biosensor microarray chip and instrumentation with application to serotyping of Escherichia coliisolates.," Opt. Express 21, 4623 (2013).Google Scholar
Wei, X., Mares, J. W., Gao, Y., Li, D., and Weiss, S. M., "Biomolecule kinetics measurements in flow cell integrated porous silicon waveguides," Biomed. Opt. Express 3, 1993 (2012).Google Scholar
Lai, W.-C., Chakravarty, S., Zou, Y., Guo, Y., and Chen, R. T., "Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors," Appl. Phys. Lett. 102, 41111 (2013).Google Scholar
Liang, F., Clarke, N., Patel, P., Loncar, M., and Quan, Q., "Scalable photonic crystal chips for high sensitivity protein detection.," Opt. Express 21, 32306 (2013).CrossRefGoogle Scholar
Yan, H., Zou, Y., Chakravarty, S., Yang, C.-J., Wang, Z., Tang, N., Fan, D., and Chen, R. T., "Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors," Appl. Phys. Lett. 106, 121103 (2015).CrossRefGoogle Scholar
Sumetsky, M., "Optimization of optical ring resonator devices for sensing applications," Opt. Lett. 32, 2577 (2007).CrossRefGoogle Scholar
Claes, T., Molera, J. G., De Vos, K., Schacht, E., Baets, R., and Bienstman, P., "Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator," IEEE Photonics J. 1, 197 (2009).Google Scholar
Hoste, J.-W., Werquin, S., Claes, T., and Bienstman, P., "Conformational analysis of proteins with a dual polarisation silicon microring.," Opt. Express 22, 2807 (2014).CrossRefGoogle Scholar
Qiu, C., Chen, J., and Xu, Q., "Ultraprecise measurement of resonance shift for sensing applications.," Opt. Lett. 37, 5012 (2012).Google Scholar
Fard, S. T., Donzella, V., Schmidt, S. A., Flueckiger, J., Grist, S. M., Talebi Fard, P., Wu, Y., Bojko, R. J., Kwok, E., Jaeger, N. A. F., Ratner, D. M., and Chrostowski, L., "Performance of ultra-thin SOI-based resonators for sensing applications," Opt. Express 22, 14166 (2014).Google Scholar
Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., Aers, G. C., Xu, D.-X., Densmore, A., and Hall, T. J., "Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide.," Opt. Express 18, 20251 (2010).Google Scholar
Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., Molina-Fernández, I., Xu, D.-X., and Schmid, J. H., "Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator," Opt. Lett. 39, 4442 (2014).Google Scholar
Donzella, V., Sherwali, A., Flueckiger, J., Grist, S. M., Fard, S. T., and Chrostowski, L., "Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides," Opt. Express 23, 4791 (2015).Google Scholar
Erenguel, J. D. A. S. A., Oñux, A. L. O. R., Édéli, J. E. A. N. A. R. C. F., Heben, P. A. C., Ernández, Í. Ñ. M. O., and Alir, R. O. H., "Controlling leakage losses in subwavelength grating silicon metamaterial waveguides," Opt. Lett. 41, 3443 (2016).Google Scholar
Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., and Cheung, K. C., "Sub-wavelength grating for enhanced ring resonator biosensor," Opt. Express 24, 15672 (2016).CrossRefGoogle Scholar
Schmidt, S., Flueckiger, J., Wu, W., Grist, S. M., Talebi Fard, S., Donzella, V., Khumwan, P., Thompson, E. R., Wang, Q., Kulik, P., Wang, X., Sherwali, A., Kirk, J., Cheung, K. C., Chrostowski, L., and Ratner, D., "Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing," SPIE Proc. 9166, 91660M (2014).Google Scholar
Wang, Z., Xu, X., Fan, D., Wang, Y., and Chen, R. T., "High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars," Opt. Lett. 41, 3375 (2016).Google Scholar
Wang, Z., Xu, X., Fan, D., Wang, Y., Subbaraman, H., and Chen, R. T., "Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits," Sci. Rep. 6, 24106 (2016).Google Scholar
Howarter, J. A. and Youngblood, J. P., "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir 22, 11142 (2006).Google Scholar
Subramanian, A., Kennel, S. J., Oden, P. I., Jacobson, K. B., Woodward, J., and Doktycz, M. J., "Comparison of techniques for enzyme immobilization on silicon supports," Enzyme Microb. Technol. 24, 26 (1999).Google Scholar
Grist, S. M., Schmidt, S. a, Flueckiger, J., Donzella, V., Shi, W., Talebi Fard, S., Kirk, J. T., Ratner, D. M., Cheung, K. C., and Chrostowski, L., "Silicon photonic micro-disk resonators for label-free biosensing," Opt. Express 21, 7994 (2013).Google Scholar
Gunda, N. S. K., Singh, M., Norman, L., Kaur, K., and Mitra, S. K., "Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker," Appl. Surf. Sci. 305, 522 (2014).Google Scholar
Vörös, J., "The density and refractive index of adsorbing protein layers.," Biophys. J. 87, 553 (2004).Google Scholar
Hoyt, L. F., "New Table of the Refractive Index of Pure Glycerol at 20°C," Ind. Eng. Chem. 26, 329 (1934).Google Scholar
Mortensen, N., Xiao, S., and Pedersen, J., “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117 (2008).Google Scholar
Andreani, L. C., “Photonic bands and radiation losses in photonic crystal waveguides,” phys. stat. sol.(b), 234, 139 (2002).Google Scholar
Lukas Chrostowski, M. H., Silicon Photonics Design, (academic, 2013).Google Scholar
Slater, J. C., Microwave Electronics, (academic, 1950).Google Scholar
Bogaerts, W., Heyn, P. D., Vaerenbergh, T. V., Vos, K. D., Selvaraja, S. K., Claes, T., Dumon, P., Bienstman, P., Thourhout, D. V., Baets, R., “Silicon microring resonators,” Laser Photonics Rev. 6, 47 (2012).Google Scholar