Skip to main content Accessibility help

Self-Driven Graphene Tearing and Peeling: A Fully Atomistic Molecular Dynamics Investigation

  • Alexandre F. Fonseca (a1) and Douglas S. Galvão (a1) (a2)


In spite of years of intense research, graphene continues to produce surprising results. Recently, it was experimentally observed that under certain conditions graphene can self-drive its tearing and peeling from substrates. This process can generate long, micrometer sized, folded nanoribbons without the action of any external forces. Also, during this cracking-like propagation process, the width of the graphene folded ribbon continuously decreases and the process only stops when the width reaches about few hundreds nanometers in size. It is believed that interplay between the strain energy of folded regions, breaking of carbon-carbon covalent bonds, and adhesion of graphene-graphene and graphene-substrate are the most fundamental features of this process, although the detailed mechanisms at atomic scale remain unclear. In order to gain further insights on these processes we carried out fully atomistic reactive molecular dynamics simulations using the AIREBO potential as available in the LAMMPS computational package. Although the reported tearing/peeling experimental observations were only to micrometer sized structures, our results showed that they could also occur at nanometer scale. Our preliminary results suggest that the graphene tearing/peeling process originates from thermal energy fluctuations that results in broken bonds, followed by strain release that creates a local elastic wave that can either reinforce the process, similar to a whip cracking propagation, or undermine it by producing carbon dangling bonds that evolve to the formation of bonds between the two layers of graphene. As the process continues in time and the folded graphene decreases in width, the carbon-carbon bonds at the ribbon edge and interlayer bonds get less stressed, thermal fluctuations become unable to break them and the process stops.


Corresponding author


Hide All
[1]Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., Geim, A. K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
[2]Lee, C., Wei, X., Kysar, J. W. and Hone, J., Science 321, 385 (2008).
[3]Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).
[4]Park, S. and Ruoff, R. S., Nat. Nanotechnol. 4, 217 (2009).
[5]Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., and Hornekær, L., Nat. Mater. 9, 315 (2010).
[6]Baughman, R.H., Eckhardt, H., Kertesz, M., J. Chem. Phys. 87, 6687 (1987).
[7]Edwards, R. S. and Coleman, K. S., Nanoscale 5, 38 (2013).
[8]Akinwande, D., Brennan, C. J., Bunch, J. S., Egberts, P., Felts, J. R., Gao, H., Huang, R., Kim, J. –S., Li, T., Li, Y., Liechti, K. M., Lu, N., Park, H. S., Reed, E. J., Wang, P., Yakobson, B. I., Zhang, T., Zhang, Y. –W., Zhou, Y. and Zhu, Y., Extreme Mechanics Letters 13, 42 (2017).
[9]Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., Xu, J. –B. and Zhu, H., Appl. Phys. Rev. 4, 021306 (2017).
[10]Fonseca, A. F., Liang, T., Zhang, D., Choudhary, K., Phillpot, S. R. and Sinnott, S. B., ACS Appl. Mater. Interfaces 9, 33288 (2017).
[11]Amorim, B., de Juan, A. Cortijo F., Grushin, A. G., Guinea, F., Gutiérrez-Rubio, A., Ochoa, H., Parente, V., Roldán, R., San-Jose, P., Schiefele, J., Sturla, M. and Vozmediano, M. A. H., Phys. Rep. 617, 1 (2016).
[12]Muniz, A. R. and Fonseca, A. F., J. Phys. Chem. C 119, 17458 (2015).
[13]Papageorgiou, D. G., Kinloch, I. A. and Young, Robert J., Progress in Materials Science 90, 75 (2017).
[14]Zhang, T., Li, X. and Gao, H., Int. J. Fract. 196, 1 (2015).
[15]Annett, J. and Cross, G. L. W., Nature 535, 271 (2016).
[16]Hamm, E., Reis, P., Leblanc, M., Roman, B. and Cerda, E., Nature Materials 7, 386 (2008).
[17]Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B. and Sinnott, S. B., J. Phys.: Condens. Matter 14, 783 (2002).
[18]LAMMPS - Molecular Dynamics Simulator. Available at (accessed 9 December 2017).
[19]Goriely, A. and McMillen, T., Phys. Rev. Lett. 88, 244301 (2002).


Self-Driven Graphene Tearing and Peeling: A Fully Atomistic Molecular Dynamics Investigation

  • Alexandre F. Fonseca (a1) and Douglas S. Galvão (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed