Skip to main content Accessibility help

Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

  • Leonard S. Fifield (a1), Yongsoon Shin (a1), Wei Liu (a1) and David W. Gotthold (a1)


Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)


Corresponding author


Hide All
1. Kim, J., Cote, L. J. and Huang, J., “Two Dimensional Soft Material: New Faces of Graphene Oxide,” Acc. Chem. Res. 45(8) 1356 (2012).
2. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. and Geim, A. K., “Unimpeded permeation of water through helium-leak-tight graphene-based membrane,” Science 335 442 (2012).
3. Joshi, R. K., Carbone, P., Wang, F. C., Kravets, V. G., Su, Y., Grigorieval, I. V., Wu, H. A., Geim, A. K. and Nair, R. R.,”Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes,” Science 343(6172) 752 (2014).
4. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, Wei and Tour, J. M., “Improved synthesis of graphene oxide,” ACS Nano 4 4806 (2010).
5. Liu, W., Zhang, J., Canfield, N. and Saraf, L., “Preparation of robust, thin zeolite membrane sheet for molecular separation,” Ind. Eng. Chem. Res. 50 11677 (2011).
6. Sijbesma, H., Nymeijer, K., van Marwijk, R., Heijboer, R., Potreck, J. and Wessling, M., “Flue gas dehydration using polymer membranes,” J. Membr. Sci. 313 263 (2008).
7. An, D., Yang, L., Wang, T.-J., and Liu, B., “Separation performance of graphene oxide membrane in aqueous solution,” Ind. Eng. Chem. Res. 55(17) 48034810 (2016).
8. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., and Ruoff, R. S., “Preparation and characterization of graphene oxide paper,” Nature, 448(7152) 457460 (2007).
9. Su, Y., Wei, H., Gao, R., Yang, Z., Zhang, J., Zhong, Z., and Zhang, Y., “Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper,” Carbon, 50(8) 28042809 (2012).
10. Potreck, J., Nijmeijer, K., Kosinski, T., and Wessling, M., “Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074,” J. Membrane Sci., 338(12) 1116 (2009).
11. Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y. J., Berger, C., de Heer, W., Bongiorno, A. and Riedo, Elisa, “Room-temperature metastability of multilayer graphene oxide films,” Nature Mat. 11 544 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed