Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T09:13:48.410Z Has data issue: false hasContentIssue false

The Role of Nano-crystallites on Conduction Mechanisms of Current Through Ag Gridlines of Si Solar Cells

Published online by Cambridge University Press:  01 February 2019

Keming Ren*
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC28223, U.S.A
Tang Ye
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC28223, U.S.A
Yong Zhang
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC28223, U.S.A
Abasifreke Ebong
Affiliation:
University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC28223, U.S.A
*
*(Email: kren@uncc.edu)
Get access

Abstract

In order to understand the impact of nano-crystallites on current transport mechanisms in screen-printed c-Si solar cells with lowly-doped emitter, Te-glass based Ag pastes with different transition temperatures (Tg) were used. The Te-glass with lower Tg showed lower Rc than the one with higher Tg due to the formation of nano-crystallites in the glass layer. These nano-crystallites enhance the conductivity of the glass and lead to higher fill factor (FF). The nature of these nano-crystallites was first identified by the Raman spectrometry and the peaks at 76 cm-1, 119 cm-1 and 145 cm-1 were corresponding to Ag2Te and PbTe. The conductive-AFM further confirmed the high conductivity of these nano-crystallites without pyramidal Ag crystallites, which means the current transporting from Si emitter to Ag gridlines is mainly through the nano-crystallites in the glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sunshot 2030. Available at: https://www.energy.gov/eere/solar/sunshot-2030 (accessed 25 November 2018)Google Scholar
Shockley, W. and Queisser, H. J., J. Appl. Phys, 32, 510-519(1961).10.1063/1.1736034CrossRefGoogle Scholar
ITRPV ninth edition, September 2018. Available at:https://www.itrpv.net/Reports/Downloads/ (accessed 25 November 2018)Google Scholar
Kim, K. H., Park, C. S., Lee, J. D., Lim, J. Y., Yeon, J. M., Kim, I. H., Lee, E. J. and Cho, Y. H., Jpn. J. Appl. Phys, 56 , 08MB25(2017,).Google Scholar
Deng, W., Ye, F., Liu, R., Li, Y., Chen, H., Xiong, Z., Yang, Y., Chen, Y., Wang, Y. and Altermatt, P. P., 44th IEEE PVSC (2017).Google Scholar
Goetzberger, A., Knobloch, J. and Voss, B., Crystalline silicon solar cells. (John Wiley & Sons, 1998) p 105.Google Scholar
Ballif, C., Huljić, D., Willeke, G. and Hessler-Wyser, A., Appl. Phys. Lett, 82, 1878-1880 (2003).CrossRefGoogle Scholar
Chen, N. and Ebong, A., Sol. Energy Mater Sol. Cells, 146, 107-113 (2016).10.1016/j.solmat.2015.11.020CrossRefGoogle Scholar
Chen, N., Tate, K. and Ebong, A., Jpn. J. Appl. Phys, 2015, 54, 08KD20 (2015).Google Scholar
Ye, F., Weiwei, D., Chen, D., Chen, Y., Jianwen, D., Ding, J., Yuan, N., Feng, Z. and Verlinden, P., 2014 EU PVSEC (2014).Google Scholar
Hilali, M. M., Sridharan, S., Khadilkar, C., Shaikh, A., Rohatgi, A. and Kim, S., J. Electron. Mater, 35, 2041-2047 (2006).CrossRefGoogle Scholar
Grupp, G., Huljic, D., Preu, R., Willeke, G. and Luther, J., Proc. 20th EC PVSEC (2005).Google Scholar
Kontermann, S., Willeke, G. and Bauer, J., Appl. Phys. Lett, 97 , 191910 (2010).CrossRefGoogle Scholar
Kontermann, S., Preu, R. and Willeke, G., Appl. Phys. Lett, 99, 111905 (2011).CrossRefGoogle Scholar
Li, Z., Liang, L. and Cheng, L., AIP (2009).Google Scholar
Kumar, P., Pfeffer, M., Willsch, B., Eibl, O., Koduvelikulathu, L. J., Mihailetchi, V. D. and Kopecek, R., Sol. Energy Mater Sol. Cells, 157, 200-208 (2016).CrossRefGoogle Scholar
Rohatgi, A., Hilali, M. M., Meier, D., Ebong, A., Honsberg, C. B., Carroll, A. and Hacke, P., Georgia Tech (2001).Google Scholar
Hilali, M. M., Al-Jassim, M. M., To, B., Moutinho, H., Rohatgi, A. and Asher, S., J. Electrochem. Soc, 152, G742-G749 (2005).CrossRefGoogle Scholar
Liang, L., Li, Z., Cheng, L., Takeda, N. and Carroll, A., J. Appl. Phys, 117, 215102 (2015).CrossRefGoogle Scholar
Lee, W.-H., Lee, T.-K. and Lo, C.-Y., Journal of Alloys and Compounds, 2016, 686, 339-346.CrossRefGoogle Scholar
Jiang, J., He, Y., Zhang, Z., Wei, J. and Li, L., J. Alloy. Comp., 689, 662-668 (2016).CrossRefGoogle Scholar
Pi, X.-X., Cao, X.-H., Fu, Z.-X., Zhang, L., Han, P.-D., Wang, L.-X. and Zhang, Q.-T., Acta Metallurgica Sinica, 28, 223-229 (2015).CrossRefGoogle Scholar
Qin, J., Zhang, W., Bai, S. and Liu, Z., Sol. Energy Mater Sol. Cells, 144, 256-263 (2016).CrossRefGoogle Scholar
Zheng, G., Tai, Y., Wang, H. and Bai, J., J. Mater. Sci. Mater. Electron, 25, 3779-3786 (2014).CrossRefGoogle Scholar
Ming, F., Si-Guo, C., Yue, W., Hong, Z. and Lin, F., J. Inorg. Mater., 31, 785-790 (2016).CrossRefGoogle Scholar
Wang, H., Ma, S., Ma, Q., Cheng, X., Wang, H. and Bai, J., J. Mater. Sci. Mater. Electron, 28, 6936-6949 (2017).CrossRefGoogle Scholar
Kurahashi, M., Shindo, N., Nishimura, K., Shirasawa, K. and Takato, H., 7th WCPEC, 1033-1036 (2018).Google Scholar
Qin, A., Fang, Y., Tao, P., Zhang, J. and Su, C., Inorg. Chem, 46, 7403-7409 (2007).CrossRefGoogle Scholar
Milenov, T., Tenev, T., Miloushev, I., Avdeev, G., Luo, C. and Chou, W.-C., Springer, (2013).Google Scholar
Zhang, B., Cai, C., Zhu, H., Wu, F., Ye, Z., Chen, Y., Li, R., Kong, W. and Wu, H., Appl. Phys. Lett, 104, 161601 (2014).CrossRefGoogle Scholar
Ren, K., Unsur, V., Chowdhury, A., Zhang, Y. and Ebong, A., 7th WCPEC, 1051-1054 (2018).Google Scholar