Skip to main content Accessibility help

Reconfiguration of van der Waals Gaps as the Key to Switching in GeTe/Sb2Te3 Superlattices

  • A.V. Kolobov (a1), P. Fons (a1), Y. Saito (a1) and J. Tominaga (a1)


GeTe/Sb2Te3 superlattices, also known as interfacial phase-change memory (iPCM), exhibit significantly faster switching and are characterized by much lower power consumption and longer data retention compared to devices based on alloyed materials. In early work, the superior performance of iPCM was linked to a crystal-crystal transition between the SET and RESET states. As the primary mechanism, a change in the stacking order of Ge and Te planes within a GeTe block was suggested. Subsequent STEM studies on epitaxial GeTe/Sb2Te3 superlattices demonstrated that the GeTe blocks were not located between Sb2Te3 quintuple layers but, were incorporated inside the latter, providing a serious challenge to the early explanation. In this work, we demonstrate that changes associated with the reconstruction of the SbTe terminating layers nearest to van der Waals gap leads to a pronounced change in the density of states and can serve as an alternative explanation for a large property contrast between the SET and RESET states in GeTe/Sb2Te3 superlattices.


Corresponding author


Hide All
[1]Ovshinsky, S. R., Phys. Rev. Lett., 21, 14501453 (1968).
[2]Wuttig, M. and Yamada, N., Nature Mater., 6, 824832 (2007).
[3]Hady, F. T., Foong, A., Veal, B., and Williams, D., Proc. of the IEEE, 105, 18221833 (2017).
[4]Simpson, R. E., Fons, P., Kolobov, A. V., Fukaya, T., Krbal, M., Yagi, T., and Tominaga, J., Nature Nanotech., 6, 501505 (2011).
[5]Kolobov, A., Fons, P., Frenkel, A., Ankudinov, A., Tominaga, J., and Uruga, T., Nature Mater., 3, 703708 (2004).
[6]Kolobov, A. V., Fons, P., Tominaga, J., Hyot, B., and André, B., Nano Letters, 16, 48494856 (2016).
[7]Petrov, I., Imamov, R., and Pinsker, Z., Sov. Phys. Cryst., 13, 339344 (1968).
[8]Sun, Z., Zhou, J., and Ahuja, R., Phys. Rev. Lett., 96, 055507 (2006).
[9]Yu, X. and Robertson, J., Sci. Rep., 5, 12612 (2015).
[10]Tominaga, J., Kolobov, A. V., Fons, P., Nakano, T., and Murakami, S., Adv. Mat. Interf., 1, 1300027 (2014).
[11]Kim, J., Kim, J., and Jhi, S.-H., Phys. Rev. B, 82, 201312 (2010).
[12]Momand, J., Wang, R., Boschker, J.E., Verheijen, M.A., Calarco, R., Kooi, B.J., Nanoscale 7, 1913619143 (2015)
[13]Kellner, J., Bihlmayer, G., Deringer, V. L., Liebmann, M., Pauly, C., Giussani, A., Boschker, J. E., Calarco, R., Dronskowski, R., and Morgenstern, M., Phys. Rev. B, 96, 245408 (2017).
[14]Küpers, M., Konze, P. M., Maintz, S., Steinberg, S., Mio, A. M., Cojocaru-Mirédin, O., Zhu, M., Müller, M., Luysberg, M., Mayer, J., Wuttig, M., and Dronskowski, R., Angew. Chem. Int. Edit., 56, 1020410208 (2017).
[15]Kolobov, A. V., Fons, P., Saito, Y., and Tominaga, J., ACS Omega, 2, 62236232 (2017).
[16]Yu, X. and Robertson, J., Sci. Rep., 6, 37325 (2016).
[17]Chen, N.-K., Li, X.-B., Wang, X.-P., Xie, S.-Y., Tian, W. Q., Zhang, S., and Sun, H.-B.,IEEE Trans. Nanotechnol., 17, 140146 (2018).
[18]Momand, J., Wang, R., Boschker, J. E., Verheijen, M. A., Calarco, R., and Kooi, B. J., Nanoscale, 9, 87748780 (2017).
[19]Lotnyk, A., Hilmi, I., Ross, U., and Rauschenbach, B., Nano Research, 11(3), 16761686 (2018).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed