Skip to main content Accessibility help
×
Home

RapidNano: Towards 20nm Particle Detection on EUV Mask Blanks

  • Jacques van der Donck (a1), Peter Bussink (a1), Erik Fritz (a1) and Peter van der Walle (a1)

Abstract

Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling EUV masks should not add particles larger than 20 nm. Detection methods for 20 nm particles on large area surfaces are needed to qualify the equipment for cleanliness. Detection of 20 nm particles is extremely challenging, not only because of the particle size, but also because of the large surface area and limited available time.

In 2002 TNO developed the RapidNano, a platform that is capable of detecting nanoparticles on flat substrates. Over the last decade, the smallest detectable particle size was decreased while the inspection rate was increased. This effort has led to a stable and affordable detection platform that is capable of inspecting the full surface of a mask blank.

The core of RapidNano is a dark-field imaging technique. Every substrate type has a typical background characteristic, which strongly affects the size of the smallest detectable particle. The noise level is induced by the speckle generated by the surface roughness of the mask. The signal-to-noise ratio can be improved by illuminating the inspection area from nine different angles. This improvement was first shown on test bench level and then applied in the RapidNano3. The RapidNano3 is capable of detecting 42nm latex sphere equivalents (and larger) on silicon surfaces. RapidNano4, the next generation, will use 193 nm light and the same nine angle illumination mode. Camera sensitivity and available laser power determine the achievable throughput. Therefore, special care was given to the optical design, particularly the optical path. With RapidNano4, TNO will push the detection limit of defects on EUV blanks to below 20nm.

Copyright

Corresponding author

References

Hide All
1. Moore, G.E., Proc. IEEE 86, 1, 8284, 1998 Reprinted from Gordon E. Moore, Electronics, 114–117, April 19, 1965.
2. Moore, G.E., reprinted from Technical Digest 1975. International Electron Devices Meeting, IEEE, 1113 (1975).
3. ITRS 2013, Litho_2013 tables.
4. Yen, A., Presentation EUVL symposium, Washington, October 27th 2014.
5. Zoldesi, C., Bal, K., Blum, B., Bock, G., Brouns, D., Dhalluin, F., Dziomkina, N., Espinoza, J. Diego Arias, de Hoogh, J., Houweling, S., Jansen, M., Kamali, M., Kempa, A., Kox, R., de Kruif, R., Lima, J., Liu, Y., Meijer, H., Meiling, H., van Mil, I., Reijnen, M., Scaccabarozzi, L., Smith, D., Verbrugge, B., de Winter, L., Xiong, X., Zimmerman, J., Proc. SPIE 9048, 90481N (2014).
6. Ham, E., van der Donck, J., Mertens, B., Snel, R., Oderwald, M., Lansbergen, R., van den Berg, H., Meiling, H., Meijer, H., Nabben, T., Moors, R., Blum, B., Poster at EUVL Symposium, San Diego, November 7th 2005, Available at: http://www.sematech.org/meetings/archives/litho/euvl/7470/Poster/FinalS1/1-RP-01%20Ham_TNO%20Poster.pdf, accessed on March 21st, 2016.
7. Brux, O., van der Walle, P., van der Donck, J.C.J., Dress, P., Proc. SPIE, Vol8166, 81662S (2011).
8. van der Donck, J.C.J., Stortelder, J.K. and Derksen, G.B., Proc. SPIE 8166, 81662T (2011).
9. Peters, J.H., Tonk, C., Spriegel, D., Han, H.-S., Cho, W., Wurm, S., Proc. SPIE, 6792, 67920F (2008).
10. Okamoto, A., Kuniyasu, H., and Hattori, T., IEEE Trans. Semiconductor Manufacturing, Vol. 19, NO. 4, 372380, November 2006.
11. Kearney, P., Cho, W.-I., Jeon, C.-U., Gullikson, E., Jia, A., Tamura, T., Tajima, A., Kusunose, H., Presentation EUVL symposium, Barcelona, 2006.
12. Shoval, L., Mangan, S., Schwarzband, I., Khristo, S., Babasubramanian, V., Goldstein, S., Brikman, R., Shoshani, N., Proc. SPIE 8322, 832227 (2012).
13. Staud, W., Holcman, I., Kudriashov, V., Frosien, J., Presentation Frontiers of Characterization and Metrology, Genoble, May 2011.
14. Miyai, H., Watanabe, H., Presentation EUVL symposium 2015, Maastricht.
15. Stokowski, S. and Vaez-Iravani, M., Proc. Int. Conf. Characterization Metrology ULSI Technol. 449, 405415 (1998).
16. Heerens, G.-J., “Container for a mask”, EP1434094A1 (2004).
17. SEMI M50-0307 (2007).
18. van der Walle, P., Kumar, P., Ityaksov, D., Versluis, R., Maas, D.J., Kievit, O., Janssen, J., van der Donck, J.C.J., Proc. SPIE 8522, 85222Q (2012).
19. Goodman, J.W., J. Optical Soc. Amer. 66, 11451150 (1976).
20. van der Walle, P., Kumar, P., Ityaksov, D., Versluis, R., Maas, D.J., Kievit, O., Janssen, J., van der Donck, J.C.J., Proc. SPIE 8681, 868116 (2013).
21. van der Walle, P., Hannemann, S., van Eijk, D., Mulckhuyse, W., van der Donck, J.C.J., SPIE Proc. 9050, 905033 (2014).
22. Bobbert, P.A., and Vlieger, J., Physica 137A 209242 (1986).
23. Bussink, P., Volatier, J.-B., van der Walle, P., Fritz, E. and van der Donck, J.C.J., poster Frontiers of Characterization and Metrology for Nano Electronics Conference, Dresden, Germany, April 14-16, 2015.
24. Crowcombe, W., Fritz, E., van der Donck, J.C.J, Koster, N.B., Proc. SPIE 9048, 904831 (2014).
25. Bussink, P., Volatier, J.-B., van der Walle, P., Fritz, E. and van der Donck, J.C.J., Proc. SPIE 9048 (2016), in press.
26. Stortelder, J.K., van der Donck, J.C.J., Oostrom, S., van der Walle, P., Brux, O., Dress, P.: Proc. SPIE 7969, 79691Q (2011).
27. Wu, C.-C., Hollemans, C.L., Fritz, E.C., Kievit, O. and van der Donck, J.C.J., Poster EUVL Symposium, Washington, October 27-29 2014.
28. Devore, J.L., in Probability and Statistics for Engineering and the Sciences; 5th edition, (Duxbury, Pacific Grove, 2000), pp. 709714.
29. Nutsch, A., Supplieth, F., Pfitzner, L., Ryssel, H., Proc. IEEE Int. Symp. Semiconductor Manufacturing, YE212, 245248 (2005).
30. SEMI E152-0709 (2011).

Keywords

RapidNano: Towards 20nm Particle Detection on EUV Mask Blanks

  • Jacques van der Donck (a1), Peter Bussink (a1), Erik Fritz (a1) and Peter van der Walle (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed