Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T11:49:12.988Z Has data issue: false hasContentIssue false

Pulse Plating of Copper onto Gas Diffusion Layers for the Electroreduction of Carbon Dioxide

Published online by Cambridge University Press:  28 December 2017

Sujat Sen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
McLain Leonard
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Rajeswaran Radhakrishnan
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Stephen Snyder
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Brian Skinn
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Dan Wang
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Timothy Hall
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
E. Jennings Taylor
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Fikile R. Brushett*
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper discusses a pulse electroplating method for preparing copper (Cu)-coated gas diffusion electrodes (GDEs) for the electrochemical conversion of carbon dioxide (CO2) to hydrocarbons such as ethylene. Ionomer coating and air-plasma surface pre-treatments were explored as means of hydrophilizing the carbon surface to enable adhesion of electrodeposited material. The pulsed-current electrodeposition method used successfully generated copper and copper oxide micro- and nano-particles on the prepared surfaces. Copper(I) species identified on the ionomer-treated GDEs are presumed to be highly active for the selective generation of ethylene as compared to other gaseous byproducts of CO2 reduction. Conversely, copper catalysts deposited onto plasma-treated GDEs were found to have poor activity for hydrocarbon production, likely due to substantial metallic character. Of note, plasma treatment of an ionomer-treated GDE after copper plating yielded further improvements in catalytic activity and durability towards ethylene production.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Centi, G., Quadrelli, E.A., Perathoner, S., Energy Environ. Sci. 6, 17111731 (2013).Google Scholar
Kenis, P.J.A., Dibenedetto, A., Zhang, T., ChemPhysChem. 18, 14, (2017).CrossRefGoogle Scholar
Ma, S., Sadakiyo, M., Luo, R., Heima, M., Yamauchi, M., Kenis, P.J.A., J. Power Sources, 301, 219228, (2016).Google Scholar
Taylor, E.J., Anderson, E.B., Vilambi, N.R.K., J. Electrochem. Soc. 139, L45L46, (1992).Google Scholar
Sen, S., Skinn, B., Hall, T., Inman, M., Taylor, E.J., Brushett, F.R., MRS Adv. 2, 8, 451458, (2017).Google Scholar
Jhong, H.-R.M., Brushett, F.R., Kenis, P.J.A., Adv. Energy Mater. 3, 589599 (2013).Google Scholar
Gao, D., Zegkinoglou, I., Divins, N.J., Scholten, F., Sinev, I., Grosse, P., Roldan Cuenya, B., ACS Nano. 11, 48254831, (2017).Google Scholar
Mistry, H., Varela, A.S., Bonifacio, C.S., Zegkinoglou, I., Sinev, I., Choi, Y.-W., Kisslinger, K., Stach, E.A., Yang, J.C., Strasser, P., Cuenya, B.R., Nat Commun. 7, 12123, (2016).CrossRefGoogle Scholar
Gebhart, L. E., Taylor, E. J., U.S. Patent No. 7,947,161 (24 May 2011).Google Scholar
Gebhart, L. E., Sun, J. J., Miller, P. O., Taylor, E. J., U.S. Patent No. 7,553,401 (30 June 2009).Google Scholar
Gebhart, L. E., Sun, J. J., Miller, P. O., Taylor, E. J., U.S. Patent No. 8,329,006 (11 December 2012).Google Scholar
Gebhart, L. E., Taylor, E. J., U.S. Patent No. 8,226,804 (24 July 2012).Google Scholar
Inman, M. E., Taylor, E.J., U.S. Patent No. 6,080,504, (27 June 2000).Google Scholar
Taylor, E.J., J. Appl. Sur. Fin. 3, 4, 178–89 (2008).Google Scholar
Milshtein, J.D., Kaur, A.P., Casselman, M.D., Kowalski, J.A., Modekrutti, S., Zhang, P.L., Harsha Attanayake, N., Elliott, C.F., Parkin, S.R., Risko, C., Brushett, F.R., Odom, S.A., Energy Environ. Sci. 9, 35313543, (2016).Google Scholar
Vilambi Reddy, N.R.K., Anderson, E. B., Taylor, E.J., U.S. Patent No. 5,084,144, (28 Jan 1992).Google Scholar
Eilert, A., Cavalca, F., Roberts, F.S., Osterwalder, J., Liu, C., Favaro, M., Crumlin, E.J., Ogasawara, H., Friebel, D., Pettersson, L.G.M., Nilsson, A., J. Phys. Chem. Lett. 8, 285290, (2017).Google Scholar
Li, C.W., Kanan, M.W., J. Am. Chem. Soc. 134, 72317234, (2012).CrossRefGoogle Scholar