Skip to main content Accessibility help

Production of In, Au, and Pt nanoparticles by discharge plasmas in water for assessment of their bio-compatibility and toxicity

  • Takaaki Amano (a1), Thapanut Sarinont (a1), Kazunori Koga (a1), Miyuki Hirata (a2), Akiyo Tanaka (a2) and Masaharu Shiratani (a1)...


Nanoparticles have great potential for biomedical applications such as early detection, accurate diagnosis, and personalized treatment of cancer. Assessment of bio-compatibility and toxicity of nanoparticles body is an emerging topic for these applications. To study kinetics of nanoparticles in body, we synthesized indium, gold and platinum nanoparticles in aqueous suspension using pulsed electrical discharge plasmas in water. The average size of synthesized primary nanoparticles for indium, gold, and platinum are 6.2 nm, 6.7 nm, and 5.4 nm, whereas the average size of secondary nanoparticles for indium, gold, and platinum are 315 nm, 72.3 nm, and 151 nm, respectively. Synthesized indium nanoparticles are transported from subcutaneous to serum and brain. The indium content in serum for the synthesized nanoparticles is much higher than that for the In2O3 nanoparticles of 150 nm in primary size. For gold and platinum nanoparticles, preliminary examination of intratracheal administration revealed that administration of synthesized nanoparticles with 10 mg/kg BW (body weight) may cause bleedings and/or emphysema in lung.


Corresponding author


Hide All
1.Chen, C., Liang, B., Lu, D., Ogino, A., Wang, X., Nagatsu, M., Carbon, 48, 939 (2010).
2.Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R.S., and Farokhzad, O.C., Clin. Pharmacol. Ther. 83, 761 (2008).
3.Brigger, I., Dubernet, C., and Couvreur, P., Adv. Drug Deliv. Rev. 54, 631 (2005).
4.Jordan, A., Scholz, R., Wust, P., Fähling, H., and Felix, R., J. Magn. Magn. Mater. 201, 413 (1999).
5.Iwai, K., J. Jpn. Soc. Atmos. Environ. 35, 321 (2000). (in Japanese)
6.Watanabe, Y., Shiratani, M., Kubo, Y., Ogawa, I., Ogi, S., Appl. Phys. Lett. 53, 1263 (1988).
7.Shiratani, M., Kawasaki, H., Fukuzawa, T., Yoshioka, T., Ueda, Y., Singh, S., Watanabe, Y., J. Appl. Phys. 79, 104 (1996).
8.Shiratani, M, Koga, K, Iwashita, S, Uchida, G, Itagaki, N, Kamataki, K, J. Phys. D, 44, 174038 (2011).
9.Seo, H., Wang, Y., Uchida, G., Kamataki, K., Itagaki, N., Koga, K., Shiratani, M., Electrochim. Acta., 95, 43 (2013).
10.Tanaka, A., Hirata, M., Shiratani, M., Koga, K., and Kiyohara, Y., J. Occup. Health 54, 187 (2012).
11.Tanaka, A., Hirata, M., Kiyohara, Y., Nakano, M., Omae, K., Shiratani, M., and Koga, K., Thin Solid Films, 2934, 518 (2010).
12.Burakov, V., Butsen, A., Hamisch, V., Misakov, P., Nevar, E., Rosenbaum, M., Savastenko, N., and Tarasenko, N.V., J. Nanopart. Res. 10, 881 (2008).
13.Mardaniana, M., Nevar, A. A., Nedel’ko, M., Tarasenko, N. V., Eur. Phys. J. D 67, 208 (2013).
14.Amano, T., Sarinont, T., Koga, K., Hirata, M., Tanaka, A., and Shiratani, M., J. Nanosci. Nanotechnol. 11, 9298 (2015).
15.Balcon, N., Aanesland, A., and Boswell, R., Plasma Sources Sci. Technol. 16, 217 (2007).
16.Torres, J., Palomares, J. M., Sola, A., van der Mullen, J. J. A. M., and Gamero, A., J. Phys. D 40, 5929 (2007).
17.Hofman, S., van Gessel, A.H., Verreychen, T., and Bruggeman, P., Plasma Source Science and Technology 20, 065010 (2011).
18.Pecora, R., J. Nanopart. Res. 2, 123 (2000).
19.Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., Hussain, S. M., Toxicol. Sci. 101, 239 (2008).
20.Yubero, C., Garcia, M.C., and Calzada, M.D., Spectrochimica Acta Part B. 61, 540 (2006).
21.Chung, F. H., J. Appl. Cryst. 8, 17 (1975).
22.Shifu, C., Xiaoling, Y., Huaye, Z., and Wei, L., J. Hazard. Mater. 180, 735 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed