Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T05:02:02.249Z Has data issue: false hasContentIssue false

Physicochemical characterization of biogenic calcium carbonate

Published online by Cambridge University Press:  10 July 2018

Katari P. Rocha
Affiliation:
Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República. 11400 Montevideo, Uruguay.
Santiago Botasini
Affiliation:
Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República. 11400 Montevideo, Uruguay.
Eduardo Méndez*
Affiliation:
Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República. 11400 Montevideo, Uruguay.
Get access

Abstract

Biogenic minerals are widely studied materials for their particular properties derived from their hierarchical structure, using building blocks with sizes spanning several orders of magnitude. These special features can be assessed with different analytical tools, and it is important to know their capabilities and limitations. In order to determine the hierarchical structure of the shells, the nacre and prismatic layers of two marine animals were characterized by infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Based on these assessments, we found that the combination of these three techniques is useful to describe each structure level, and to explain some of the unique properties observed in these natural materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, J. and Bhushan, B., RSC Adv. 2, 7617 (2012).CrossRefGoogle Scholar
Liu, C., Xie, L. and Zhang, R., Sci. Rep. 5, 1 (2015).Google Scholar
Kakisawa, H. and Sumitomo, T., Sci. Technol. Adv. Mater. 12, 64710 (2011).CrossRefGoogle Scholar
Nudelman, F., Cell Dev. Biol. 46, 2 (2015).CrossRefGoogle Scholar
Volkmer, D., in Handbook of Biominerization, edited by Baeuerlein, E. (Wiley-VCH, Weinheim, 2007), p. 65.CrossRefGoogle Scholar
Imai, H. and Oaki, Y., in Handbook of Biominerization, edited by Baeuerlein, E. (Wiley-VCH, Weinheim, 2007), p. 89.CrossRefGoogle Scholar
Gerhard, E.M., Wang, W., Li, C., Guo, J., Ozbolat, I.T., Rahn, K.M., Armstrong, A.D., Xia, J., Qian, G., Yang, J., Acta Biomater. 54, 21 (2017).CrossRefGoogle Scholar
Yang, H., Yang, S., Kong, J., Dong, A., and Yu, S.. Nat. Protoc. 10, 382 (2015).CrossRefGoogle Scholar
Askarinejad, S. and Rahbar, N., J. R. Soc. Interface. 12, 20140855 (2015).CrossRefGoogle Scholar
Liu, G., Ji, B., Hwang, K.-C., Khoo, D.C., Comp. Sci. Technol. 71, 1190 (2011).CrossRefGoogle Scholar
Ghosh, P., Katti, D.R., Katti, K.S., Biomacromolecules 8, 851 (2007).CrossRefGoogle Scholar
Mohannty, B., Katti, K.S., Katti, D.R., Mech. Res. Commun. 35, 17 (2008).CrossRefGoogle Scholar